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Abstract

Debugging is a necessity in programming, in both professional
and educational contexts. For novices, however, debugging is often
a significant challenge. Understanding what students actually do
when debugging is key to addressing difficulties and developing
targeted interventions. As a result, several studies investigated the
students’ debugging process. Nevertheless, it is unknown which
aspects have been analyzed so far and which gaps still exist. To
clarify the state of research, we conducted a scoping review and
identified 36 papers that analyze students’ debugging processes.
Our review shows that the majority of the studies focused on se-
lected parts of the process, mainly by analyzing screen recordings
or videos from the classroom using qualitative, inductive methods.
Moreover, most of the papers either assessed the students’ debug-
ging strategies or their performance. As a result, there is a lack of
deductive analysis approaches focusing on investigating the whole
debugging process. Consequently, this review provides a starting
point for future analyses of debugging processes.
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1 Introduction

Despite decades of research on computing education, learning to
program is still challenging for students. They struggle with several
different aspects, like new concepts and numerous bugs in their
programs. Consequently, debugging, the systematic process of lo-
cating and solving errors in a program, is a necessity for students,
which is not only unavoidable, but also often causes frustration
[50].
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Also, from a professional point of view, debugging is an essential
and time-consuming process of software development. Professional
developers spend up to 40% of their time debugging code. To be
successful, they apply a systematic and iterative process to find and
fix bugs [51]. However, this process is not intuitive for novices and
must be taught explicitly [27]. As a result, several interventions
have been developed to teach students a systematic debugging
process in order to facilitate successful debugging [66].

For designing effective interventions and offering targeted sup-
port, it is essential to understand how learners actually engage in the
debugging process. While pre-post-measurements can demonstrate
progress, they fall short in revealing what happens in between the
points of measurement [55]. In contrast, investigating the process
itself offers valuable insights into where learners struggle, how they
approach bugs, and what kind of support may help them best [42].
Moreover, process-level data can enable the design of personalized,
timely feedback or even automated scaffolding [3].

In general, debugging processes have been the subject of numer-
ous empirical studies in computing education, and a wide range of
methods, data sources, and analysis approaches have been used (e.g.,
[1, 16, 62]). However, so far, no comprehensive synthesis exists that
provides an overview of which methodologies have been used to
investigate debugging processes. To address this gap, we conducted
a scoping review that investigated the current body of knowledge
on students’ debugging processes. To this end, this review aims
to provide a synthesis of the study designs, data sources, analysis
methods, and aspects investigated in prior work. Furthermore, we
sought to identify research gaps and thus offer perspectives for
future research in the field.

2 Related Work

As most programs do not work correctly on the first attempt, debug-
ging is a necessity, not only in professional software development,
but also in computing education. Thereby, debugging refers to the
systematic process of identifying and correcting bugs in a program.
An early systematic review from McCauley et al. provides a compre-
hensive overview of educational research on debugging until 2008.
The review summarizes key findings on the causes and the types
of bugs in students’ programs, the prerequisites for successful de-
bugging, the differences between novices’ and experts’ debugging
processes, and approaches for teaching and learning debugging
effectively. A central conclusion of the review was the need for
explicit teaching of debugging, because debugging skills differ from
programming skills and are not acquired “on the go” when learning
to program [42]. In the following years, debugging moved more
into the focus of teaching and research, and several teaching in-
terventions addressing on debugging have been developed. To this
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end, in 2024 a systematic review from Yang et al. (2024) synthe-
sized knowledge about interventions on debugging. The result is a
summary of pedagogical approaches and intervention modalities
used for teaching debugging. The review highlights characteristics
for successful interventions like the design of learning settings,
such as collaboration or working unplugged. Moreover, most of
the approaches focus on teaching selected steps of the debugging
process, like identifying fault symptoms or diagnosing the fault,
while only a few interventions address non-cognitive aspects like
self-efficacy [66].

2.1 The Debugging Process

From our perspective, a debugging process refers to an ideal-
typical sequence of steps aimed at finding and fixing bugs. Con-
sidering the current state of research, also other terms like “global
strategies” [34] refer to our understanding of debugging processes.
In this work, however, we use the term debugging process for this
global perspective on debugging.

As debugging is described as a process, numerous empirical and
theoretical process models have been developed to describe suc-
cessful, ideal-typical debugging processes of professional software
developers. Already in the 70s, research has investigated debug-
ging processes. For instance, Gould (1975) observed experts dur-
ing debugging, which resulted in an early, gross description of an
ideal-typical process model [18]. Others, such as Gilmore (1991),
combined empirical findings from observations with existing de-
bugging process models. They concluded with a model that focuses
on program comprehension and the construction of a mental rep-
resentation of the problem during debugging [17]. In contrast, the
model from Zeller (2009) is based on observations on how to con-
duct experiments in the natural sciences. This so-called scientific
method was mapped to the debugging process. In doing so, this
model explicitly highlights hypothesis testing through experiments
to find bugs [67]. Overall, regardless of the development of the
ideal-typical debugging process model, all models can be summa-
rized into the following four steps: (1) observe the failure, (2) set
up a hypothesis, (3) verify the hypothesis, and (4) fix the bug and
verify the solution.

Furthermore, research shows that the debugging process may
vary significantly depending on whether working with own code
or code written by other developers. When debugging code written
by others, additional comprehension steps are required [25], which
is addressed only in some of the ideal-typical debugging process
models like the one from Gilmore (1991).

Besides a systematic process, debugging strategies are context-
dependent key elements for successful debugging [18, 34, 43]. Those
strategies are sometimes also referred to as tactics [18], or local
strategies [34]. Debugging strategies are applied during one or more
steps to support the debugging process. Examples for expedient
strategies are setting breakpoints in the IDE to validate a hypothesis
or tracing the code for a better understanding of the program.

2.2 Analyzing Processes in Educational
Research

In various domains of educational research, there is a growing inter-
est in understanding the processes of how students learn instead of
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only measuring what they have learned. Consequently, recent work
increasingly emphasizes the analysis of processes. This provides
opportunities to identify factors that support or hinder learning
progress and offers valuable insights into the processes to improve
teaching [3].

Rather than only analyzing static performance outcomes, re-
search investigating processes focuses on the temporal and sequen-
tial structure of learner behavior [55]. To this end, various data
types like videos, eye gazes, and log data are used to record pro-
cesses [54] which can be assessed in a qualitative and quantitative
manner. When analyzing learning process data, several dimensions
can be investigated to provide a more comprehensive understand-
ing of the learning process, including cognitive, meta-cognitive,
social, and motivational-affective processes [3]:

Cognitive processes refer to the mental processes of students
that are required for learning and problem-solving [2]. Especially,
high cognitive load hampers the acquisition of new knowledge
[58]. To this end, efficient cognitive processes are essential for
learners to successfully integrate new information into their long-
term memory.

Meta-cognitive processes involve learners’ abilities to control their
learning process, e.g., to monitor, to regulate, and to reflect on
their learning strategies [36]. Meta-cognitive competencies become
especially relevant in situations where initial approaches fail and
the consideration of alternatives is necessary [21, 36]. In such cases,
the reflection of failure helps to prevent similar mistakes in the
future [21]. As a result, meta-cognitive competencies are essential
for sustainable learning.

Social processes emerge when learners are collaborating. Inter-
acting with peers is important, and the discourse with others can
lead to an improved understanding of the learning content [12].
However, the effectiveness of collaboration is highly influenced
by the group composition [53] as it affects the co-construction of
knowledge [12].

Motivational-affective processes encompass learners’ emotional
and motivational states. Grounded in the self-determination theory
from Deci and Ryan (2004), experiencing autonomy, competence,
and relatedness helps the learners to develop intrinsic motivation,
which supports positive emotions [9]. Moreover, intrinsic motiva-
tion is associated with more and longer engagement, as well as
with higher learning outcomes [49].

In summary, process analysis offers great potential for under-
standing how students learn. This potential has also been recognized
in computing education. To this end, in previous research, not only
programming processes were analyzed in-depth [6, 26], but also
debugging processes have been taken into account already. Never-
theless, there is still a lack of a synthesis of the existing literature
on debugging processes.

3 Methodology

The aim of this paper is to synthesize previous research that in-
vestigated debugging processes in the context of computing edu-
cation research. We want to provide a comprehensive overview of
which analysis approaches were used to assess debugging processes,
which aspects were analyzed, and what gaps are still unaddressed.
To this end, we answer the following four RQs:
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Figure 1: Visualization of the Paper Selection Process

RQ1: How was the study designed to capture debugging
processes? First, we analyzed how the studies to capture debugging
processes were set-up, as they are the foundation for further analy-
sis. Due to the changes in the debugging process when debugging
code written by others [25], we documented which code was used
for the study. Moreover, especially for younger students, working
unplugged is particularly useful, as they benefit from embodiment
and tangible experiences [66]. As unplugged activities also support
code comprehension, we evaluated whether the study was con-
ducted using plugged or unplugged teaching methods. In addition,
we investigated whether the students worked collaboratively or not
because collaboration can have effects on the students’ performance
[66]. Furthermore, interventions on debugging might have an effect
on the debugging process. To this end, we also assessed whether
an intervention was included in the study.

RQ2: What data sources have been used to capture debug-
ging processes? Second, as the data type is an important founda-
tion for investigating processes [3], we analyzed the data that was
used for capturing debugging processes.

RQ3: How were debugging processes analyzed? Third, we
investigated how the data was analyzed (qualitative vs. quantitative)
and examined the methodologies in detail. We describe the analysis
methodologies because they provide deep insights into previous
approaches, which offer inspiration for further process analysis.

RQ4: Which aspects have been analyzed within the cap-
tured debugging processes? Fourth, we characterized the studies
according to the aspects that have been taken into account. To
this end, we outline the goal of the analyses, the dimensions of the
processes that were analyzed, and the outcomes and constructs that
were investigated. By analyzing the goal of the studies we aim to
provide insights into the purposes of the analyses. Considering the
dimensions, we assessed whether the analysis targeted cognitive,
meta-cognitive, motivational-affective, or social processes [3]. Those
dimensions offer the chance to classify which kind of processes
have been analyzed within the studies in our corpus. Moreover,
investigating outcomes and constructs analyzed in the studies pro-
vides deep insights into which topics were taken into account. As
a result, this offers the possibility to derive aspects that are still
unaddressed in this field of research.

3.1 Paper Selection

In general, we followed the process proposed by the JBI Manual for
Evidence Synthesis for conducting scoping reviews [52]. Deviations
from this approach are described and justified at the respective
step. For reporting, we applied the PRISMA guidelines for Scoping
Reviews [59].

First, we defined the following inclusion criteria for selecting
papers that addressed our goal and the RQs best:

e Age Group: K-12 or higher education students
e Topic: Work that focuses on debugging processes

Considering debugging processes, we used a broad understanding
and included all papers that addressed debugging processes inde-
pendently of the analysis method and focus. To be included in the
corpus of this scoping review, a study had to meet both inclusion
criteria. All other studies were excluded.

For the initial paper selection, we derived from the proposed
methodology of the JBI Manual because it did not consider already
existing bodies of knowledge. Our paper selection process is visual-
ized in Figure 1. We started with 12 base papers that the authors
knew from previous work. In the first round of paper selection
in April 2025, we searched Google Scholar using the terms debug-
ging process education, debugging process computing education, and
debugging computing education, which we derived from the key-
words of the base papers. Questionable papers were examined and
discussed in detail by both authors, who consequently agreed on
inclusion or exclusion.

As a result, we excluded papers like the work from Vessey (1985)
because she focused on analyzing debugging processes of profes-
sional software developers, which was not within our targeted age
group. Moreover, the paper from Hassan et al. (2024) was excluded
because they analyzed the usage of debuggers for enhancing code
comprehension without capturing debugging processes. Compara-
bly, the paper from Michaeli and Romeike (2019) was not included
in the review, because they only presented a structured debugging
process as part of an intervention but did not investigate the pro-
cess itself. Finally, we concluded the first round of paper selection
with 21 papers.

Subsequently, for the second round of paper selection, we con-
ducted one round of forward and backward snowballing according
to the guidelines of Wohlin (2014) in June 2025. For forward snow-
balling, we used Google Scholar to assess the references to the
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included papers. In total, we identified 160 papers for further ex-
amination. Those papers were also assessed by the authors, who
again applied the inclusion criteria stated at the beginning of this
section. This was followed by intense discussions about question-
able papers, resulting in agreement on inclusion or exclusion. After
the second round of paper selection, we added further 15 papers
to the corpus. As a result, the corpus of this scoping review consists
of 36 papers. Table 3 provides an overview of all the papers that
were included in the scoping review.

3.2 Data Extraction

To analyze the corpus, we defined categories aligned with the four
research questions. For RQ1 and RQ4, categories were first derived
from a small random sample of the papers to ensure that they
reflected the data. For RQ2 and RQ3, there was no need for a sub-
division of the categories to answer the research questions. We
derived the codes for all but one category inductively from the
corpus to ensure our analysis covered all aspects of the included
papers. Only the codes for describing the dimensions of the process
analysis (RQ4) were taken from existing work: Based on the frame-
work from Bauer et al. (2025), we distinguished between cognitive,
meta-cognitive, social, and motivational-affective processes. Table
1 provides an overview of all research questions, their categories,
and the corresponding codes.

Both authors carried out data extraction collaboratively. All cod-
ing decisions and interpretations were discussed and agreed on. In
Table 2 we present an excerpt of the analysis table of the included
studies.

Bibliometric Information: Year of Publication, Age Group

RQ1: How was the study designed to capture debugging processes?

Code for Debugging Own, Others, No code
Code Representation

Collaboration Yes, No

Plugged, Unplugged, No code

Intervention Included Yes, No

RQ2: What data sources have been used to capture debugging processes?

Data Sources Screen recordings, Videos, Snapshots, Retrospective
interviews, Think-aloud, Artifacts, Survey, Perfor-
mance test, Eyetracking, Interviews, Log data, Man-

ual logs

RQ3: How were debugging processes analyzed?

Analysis Method Qualitative-inductive, Qualitative-deductive, Quanti-

tative, Qualitative & Quantitative

RQ4: Which aspects have been analyzed within the captured
debugging processes?

Goal Describe, Compare, Intervene

Dimensions Cognitive, Meta-cognitive, Social, Motivational-
affective

Aspects Debugging strategies, Debugging performance, De-
bugging process-steps, Bugs, Emotions, Collabora-
tion

Table 1: Categories and codes used for answering the research
questions of the scoping review.
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4 Results

The following section presents the results of this scoping review.
After describing some bibliometric information about the corpus,
we answer the research questions.

Our corpus consists of 36 papers, which investigated debugging
processes using various data types and focused on several aspects.
The oldest paper in the corpus was published in 1986 [61], while the
majority of the papers were published between 2020 and 2025 (see
Figure 2). As we included only papers targeting K-12 and higher ed-
ucation students, we could identify the following four different age
groups: pre-school, primary school, secondary school, and higher
education (see Figure 3). Thereby, pre-school includes all children
before first grade, primary school ranges from first to fourth grade,
and secondary school includes grades five and up.

Figure 2: Years of Publication of the included papers.

0 5 10 15 20 25

HEd mpre-school mprimary ®secondary

Figure 3: Age group of the study participants.

4.1 ROQ1: Study Design

For analyzing the study designs used for investigating debugging
processes, we evaluated the following four aspects: selection of the
code, plugged vs. unplugged task design, collaboration vs. individ-
ual work, and whether an intervention was included or not.

4.1.1 Selection of Code. One important aspect to consider when
designing studies to analyze debugging processes is the selection
of the code that the students should debug. Usually, in the class-
room, when learning to program, students debug their own code,
while debugging tasks frequently ask students to debug code writ-
ten by someone else. Furthermore, others’ code causes additional
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Source | Year of pub- | Age Data source Analysis Plugged vs. | Prior inter- | Collabora- | Code Goal Dimen- Aspects
lication group methodology | unplugged vention tive work sions
[48] 2024 K-12 Screen recording | Qualitative, de- | Plugged No Yes Own describe | Cognitive | Collaboration
Videos ductive Unplugged code compare | Social Process Steps
[62] 2023 HEd Screen recording | Qualitative, in- | Plugged Yes No Others’ | describe | Cognitive | Debugging
Think-Aloud ductive code Strategies

Table 2: Excerpt of the analysis table used for investigating the papers included to the corpus.

hurdles in the debugging process, as the students first need to un-
derstand the program before they can start debugging. 17 studies
in our corpus (e.g., [4, 24, 65]) captured the students when work-
ing on programming exercises and then focused on the debugging
sequences for analysis. This allows for recording the most natural
debugging process as students are debugging their own code. In
contrast, 17 other papers (e.g., [14, 22, 62]) used specific debugging
tasks which were designed by others. Knowing common bugs in
advance not only supports teachers but also allows for better com-
parisons between students’ debugging processes. The work from
Kocabas et al. (2022) presents a unique case, working with Lego
bricks instead of a traditional representation of code [32]. How-
ever, we interpreted the given Lego building as an unplugged type
of code and classified it as working with others’ code. Moreover,
two papers in our corpus did not use code for their study at all
[15, 41]. They collected their data via interviews with the students,
discussing how they would approach a debugging task (see Figure
4).

= Own
= Others
= No Code

Figure 4: Type of code that was used for the study: own code,
others’ code, no code.

4.1.2  Plugged vs. Unplugged Task Design. Another important as-
pect to consider is how the task is designed, whether it is a plugged
or an unplugged task. In general, the majority of the papers used
common plugged activities. On the one hand, they addressed typi-
cal text-based programming languages (e.g., [5, 35, 56]), and on the
other hand, block-based programming languages were addressed
as well (e.g., [4, 30, 65]). Two contributions also considered de-
bugging e-textiles, which are a special case of physical computing
devices [22, 23]. However, especially in pre-school and primary
school, working unplugged is an important teaching approach in
computing education, which, for example facilitates better program

comprehension. In our corpus, four studies used unplugged activ-
ities. Three of them had the typical age group of pre-school or
primary school students in their scope [32, 45, 48]. For example,
Kocabas et al. (2022) investigated debugging strategies that young
children used for fixing Lego buildings so that they matched the
required structure [32]. Only one study worked unplugged with
university students, using paper-based program code for theoret-
ically describing debugging processes [63]. Moreover, one paper
described a study using plugged and unplugged tasks, as they were
working with primary and secondary school students [48]. Figure
5 shows the crossover of the age group with the task design.

mPlugged mUnplugged m Nocode

Figure 5: Plugged vs. Unplugged task design in relation with
the age group of the respective study.

4.1.3 Collaboration vs. Individual Work. Moreover, distinguish-
ing between collaborative and individual work is another relevant
aspect for designing tasks. Collaboration offers the students the
possibility to work together [57] and to share cognitive load [7].
Especially, in programming contexts, collaborative settings have
been intensely investigated [19], while in the context of debugging
is a lack of interventions that target collaboration [66]. About a
third of the studies in our corpus asked the students to work collab-
oratively in pairs (e.g., [23, 46, 48]) or in small groups (e.g., [13, 29]),
while only some of them later also assessed effects of collaboration
[13, 22, 23, 46, 48, 61] (see Sections 4.4.2 and 4.4.3). In contrast, the
24 remaining studies required individual work (see Figure 6).

4.1.4 Intervention Included? As interventions can affect the out-
come of a study, the fourth aspect we investigated regarding study
design was whether the study had an intervention included, or
not. In our corpus, we identified 14 studies (e.g., [11, 24, 62]) that
described an intervention (see Figure 7). Interventions, for instance,
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= no

Figure 6: Proportion of included papers in which the students
worked collaboratively.

used the analysis of worked examples [4] or scaffolding [29] to
improve students’ debugging skills. However, not all of them later
assessed the outcome of the intervention (see Section 4.4.1). Figure
7 shows the overlap between studies that included an intervention
and those that also assessed the intervention’s outcome.

= yes - with
Assessment

= yes - without
Assessment

= no

Figure 7: Proportions of papers that included an intervention
and also assessed the outcomes.

4.2 RQ2: Data Sources

The data source is one of the most crucial aspects for analyzing
processes, as the data is the foundation for the subsequent analysis
and the outcomes of the study. We identified 12 different types of
data that were used for capturing debugging processes:

e Screen recordings: Videos that only capture the students
screens and conversations

o Videos: Recordings that show the whole classroom and/or
students working on tasks

o Snapshots: Copy of the code that is captured at distinct points
of the process, e.g., every time the code was uploaded to an
auto-grader

o Retrospective-Interviews: An interview that is conducted after
working on the debugging task to gain more information
about the process

o Think-Aloud: Audio recordings of the students verbalizing
their thoughts while debugging

o Artifacts: Final product (code, debugging diary....) of the stu-
dents after debugging
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e Survey: Questionnaire on aspects related to debugging

e Performance Test: Test that assesses the debugging perfor-
mance of students

o Eyetracking: Data that captures the students eye movements
during debugging

o Interview: An interview that is conducted to collect informa-
tion on the students’ debugging approaches

o Log Data: Data that is collected automatically by a system
and offers the possibility to reconstruct the whole debugging
process with all interim steps

o Manual Logs: Notes from the researchers observing students
when debugging

In the following, we dive deeper into selected types of data that
might not be easy to distinguish from others: Screen recordings
were used the most in our corpus to record the students’ debugging
processes (e.g., [8, 10, 31]). In contrast to screen recordings, videos
captured the whole classroom or the students when working on
the tasks (e.g., [22, 29, 46]). With 10 studies, videos were the second
most used data source within our corpus.

Distinguishing between interviews and retrospective interviews,
a study was coded as an interview when the interview was the man-
ner in which the debugging process was captured [30, 41]. When the
students were interviewed after working on the debugging tasks,
in order to gain more information about their approach, how they
did, what problems they encountered, etc., we coded the interviews
as retrospective interviews (e.g., [15, 22, 28]).

Moreover, we differentiated between program snapshots and log
data. Both data types are typically collected from IDEs or auto-
graders. However, log data captures all actions that occur within
the IDE, offering a gapless documentation of the debugging process.
In contrast, program snapshots feature the state of debugging only
at specific points, like compilation or uploading to an auto-grader.
Consequently, snapshots lack all actions that are conducted between
two points in time. Within our corpus, only two papers captured log
data [35, 56], while seven studies worked with program snapshots
(e.g., [1, 39, 40]).

Considering the number of data sources per study, in several
studies, more than one type of data was collected and analyzed. For
example, screen recordings were often combined with retrospective
interviews or think-aloud protocols (e.g., [8, 11, 28]). Moreover, in
some papers, screen recordings were augmented by videos that
captured the classroom situation (e.g, [30, 33, 46]). In contrast,
snapshots were used all the time on their own. More details about
the frequency of the data sources and the number of studies that
used more than one data source are provided in Figures 8 and 9.

4.3 RQ3: Data Analysis

To gain insights into how the data was analyzed, we investigated
the methodologies applied in the papers. An analysis was either
qualitative, quantitative, or used both approaches.

Within our corpus, we found 32 papers that conducted a quali-
tative analysis. In total, 20 studies applied an inductive category
formation, analyzing several different outcomes and constructs (re-
fer to Section 4.4.3). Those papers mainly investigated debugging
strategies (e.g., [8, 16, 25]). A few also took debugging steps into
account (e.g., [24, 39, 63]). 17 studies used a deductive approach
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Figure 8: Absolute numbers of data that was used to capture
the debugging process. Several papers used more than one
data source.

Number of Data Sources
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Figure 9: Number of Data Sources used in a paper.

referring to existing literature for developing a category system
e.g., [4, 13, 48]). The theory that was used was, in most cases, a
list of established debugging strategies (e.g., [25, 47, 60]). Other
theories used for deductive analysis were related to collaboration
[22], regulation strategies [11, 13, 48], and some studies mapped
their data to debugging process steps [10, 30, 31, 48]. Moreover,
five papers within our corpus used both inductive and deductive
approaches to answer the research questions (e.g., [11, 30, 61]).

Focusing on quantitative data analysis, four papers fully relied
on quantitative methods [37, 38, 56, 68] while 13 papers combined
qualitative and quantitative approaches (e.g., [4, 40]). The major-
ity of them investigated surveys or program snapshots (e.g., [16,
39, 40]). However, some of the studies analyzed eyetracking data
quantitatively [35, 37]. For an overview of the proportions of the
methodological approaches used, refer to Figure 10. As some papers
used more than one approach, the total number of papers in the
figure exceeds 36.

In general, in our corpus, there is a lack of consistent approaches
for analyzing the data. We did not find the same methodology
applied twice by different research groups. Each research group
described its own methodology. The following two examples high-
light the variety of methods used to analyze debugging processes
and provide insights into how such analyses are conducted: Parkin-
son et al. (2024) started with transcribing all audio, video, and
screen recording data verbally. For coding the data, they applied
a qualitative-deductive approach using debugging process steps
and types of regulation strategies from the literature. As a last step,
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Figure 10: Type of methodology: Qualitative vs. quantitative.

they attempted to identify patterns in the codings [48]. In contrast,
Liu and Paquette (2023) conducted a quantitative analysis by calcu-
lating “mean, median, and standard deviation of each debugging
feature” using log data in order to gain information about the stu-
dents’ debugging behavior. Moreover, by using logistic regression
models, they classified the students’ approaches as either efficient
or inefficient [38].

4.4 RQ4: Analysis Aspects

To investigate what aspects the papers in our corpus analyzed,
we captured the overall goal of the analysis together which the
analyzed dimensions, and outcomes and constructs.

4.4.1 Goal. To classify the goal, we grouped our corpus into three
categories: describe, compare, and intervene. Even if the cat-
egories were derived from the corpus, they are not disjunct, and
a study could address more than one goal. Overall, most studies
focused solely on describing the analysis results, which often were
debugging strategies (e.g., [5, 47, 62]) or the debugging performance
of the students (e.g., [23, 28, 35]). However, debugging performance
was also often analyzed by comparing metrics such as time spent
and debugging success [1, 14] or by contrasting the eye movements
of high and low performing students [37]. Only four papers in
our corpus aimed at assessing the effect of interventions [4, 29,
31, 61]. Besides investigating the intervention success, the work
from Misirli and Komis (2023) also aimed at describing other out-
comes like strategies or typical bugs [45]. Furthermore, the paper
from Zhang et al. (2023) analyzed the debugging performance of
students by describing their performance in detail, contrasting
different groups of students, and investigating the effects of an
intervention on the performance [68]. For the exact distribution,
consider Figure 11.

4.4.2 Dimensions. For characterizing processes, we considered
four dimensions:

e cognitive processes: mental processes that are needed for
learning and problem-solving [2]

e meta-cognitive processes: processes that supervise the cogni-
tive processes using strategies [36]

o motivational-affective processes: emotional and motivational
states during debugging [9]

e social processes: collaborative processes during debugging

(12]
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Figure 11: Goal of the analyses.

In our corpus, we could identify all four dimensions, and each study
addressed at least one dimension. Eight studies also address more
than one dimension (e.g., [39, 48, 61]). However, the vast majority
focuses on analyzing cognitive processes like the usage of strategies
(e.g., [32, 41, 65]), typical bugs that occur in students’ code (e.g.,
[14, 30, 45]), or the students’ debugging performance (e.g., [29, 35,
38]). At least some papers took social processes like the effect of
group dynamics [13, 22, 23, 46, 61] or the application of regulation
strategies in collaborative settings [48] into account. Considering
motivational-affective processes, five papers evaluated emotions
in the debugging process [8, 11, 16, 22] and self-perceptions on
debugging [39]. Only two papers in our corpus investigated meta-
cognition by investigating planning [61] and regulation processes
when debugging [13]. Figure 12 provides details about the absolute
numbers of papers per dimension.
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Figure 12: Dimensions that were investigated with the analy-
ses.

4.4.3 Outcomes & Constructs. For investigating outcomes and con-
structs that were analyzed by the papers in our corpus, we induc-
tively identified six different codes:

o Debugging Strategies: Debugging Strategies that the students
used while identifying and fixing bugs

o Debugging Performance: Measurement for how good, fast,
etc. the students performed in debugging

e Debugging Process-Steps: Steps from ideal-typical debugging
processes that were investigated in the students’ processes

o Bugs: Bugs that occurred in students’ programs

e Emotions: Emotions that arise during the debugging process

Elena Sporer and Tilman Michaeli

e Collaboration: Impact of collaboration on the debugging pro-
cess

The majority of our corpus focused on investigating debugging
strategies in the students’ work. The strategies that the students
use are mostly related to steps in the process of identifying and
fixing bugs. Popular examples are code tracing for a better under-
standing of the program [14, 15, 41, 47, 62], pattern matching to
e.g., detect missing curly braces [14, 15, 41, 47], and using print
statements for examining variable values [62]. Furthermore, debug-
ging strategies were frequently classified as effective or ineffective
(e.g., [14, 47, 62]). The second-most analyzed outcome of the studies
within our corpus was the debugging performance of the students.
Some studies investigated the relationship between programming
and debugging skills [1, 14], while others focused on differences in
the debugging behavior of high and low performing students [37,
39]. Only a few studies took the the remaining aspects into account:
Regarding debugging process-steps, the studies often analyzed the
debugging behavior of the students (e.g., [33, 56, 63]). Only three
papers mapped the students’ work to established debugging pro-
cess steps [10, 30, 48]. Considering bugs, some papers investigated
which bugs frequently arise in the students’ code, e.g., incorrect
variable definitions, or wrong conditional statements [1, 4, 30, 45]
and how difficult they were to solve [14]. Regarding collaboration,
only a few studies assessed the effects of group work on debugging
processes [13, 22, 23, 46, 61] and the application of social regulation
strategies [48]. Within our corpus, five papers considered emotions
like anxiety [16], joy [16], frustration [11, 16], and the attitudes to-
wards debugging [8, 22, 39]. The distribution is visualized in Figure

13.
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Figure 13: Aspects on which the analyses focused. An analysis
could focus on one or more aspects.

5 Discussion

In this scoping review, we investigated 36 papers that analyzed
the debugging processes of K-12 and higher education students.
We analyzed how the studies were designed, which data were cap-
tured, what analysis methods were used, and what aspects were
investigated in order to synthesize previous research on debugging
processes. In the following, we present and discuss themes (and
non-themes) that emerged from our corpus.
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The papers in our corpus primarily analyzed cognitive di-
mensions of the debugging processes, thereby focusing on in-
vestigating debugging strategies and assessing the debugging per-
formance of students. Only two papers [13, 61] focused on meta-
cognitive strategies like planning, monitoring, and reflecting on
the debugging processes. This result is surprising to us, because
meta-cognitive skills are a key factor for successful debugging [66].
Nevertheless, this goes along with the conclusion of Yang et al.
(2024) that there is a need for more interventions focusing on non-
cognitive constructs.

Besides a lack of meta-cognitive aspects, motivational-affective
and social aspects also received limited attention. Only a few papers
in our corpus analyzed aspects like attitudes towards debugging
[8] or which emotions students experience during debugging [16].
However, as emotions are important, especially regarding the level
of motivation and frustration, this lack is emerging. Taking emo-
tions into account offers the possibility to develop more holistic
models of students’ debugging behavior, resulting in better emo-
tional support for students and reducing frustration. Focusing on
social aspects, especially in the context of programming educa-
tion, the approach of pair programming is widely explored [19]. In
contrast, despite the great potential that collaborative processes
offer for reducing cognitive load and improved problem solving
processes, collaborative debugging remains underexplored. Even if
aspects like collaborative regulation strategies and effects of group
dynamics on debugging processes were considered in a few studies,
collaboration is only a side aspect when investigating debugging
processes.

In our corpus, a vast variety of data sources is used. However,
not all data types are suitable for a process analysis as they do not
capture the whole process. One popular example of this are program
snapshots that were mostly collected via auto-grading platforms
and were used in several papers of our corpus. Those snapshots
omit what happens between two submissions, and consequently
they miss several relevant debugging steps, like formulating and
verifying a hypothesis. Consequently, it is not possible to investi-
gate ideal-typical debugging processes using snapshots. In contrast,
data collected via programming environments (log data) and screen
recordings offer the possibility to capture complete processes. While
screen recordings were frequently used already, studies using log
data to investigate debugging behavior are rare. Even when log
data or screen recordings were captured, the analysis often focused
on selected time frames or on prominent events, without inves-
tigating the whole debugging process. As a result, often no real
process analysis was conducted because either the data did not
facilitate this or the research focus was on other aspects than pro-
cess analysis. Moreover, investigating the whole debugging process
by mapping log data or screen recordings to debugging process-
steps and contrasting them with an ideal-typical debugging process,
offers the chance to enhance our understanding of how students
debug and when they need support. In addition, log data offers
the foundation for personalized and automated real-time feedback
for learners. Consequently, it is a missed opportunity not to use
log data to analyze debugging processes. Going along with a lack
of process analysis, investigating debugging is often reduced to
analyzing performance outcomes, e.g., the number of bugs fixed or
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the time spent on a task. Especially for intervention studies, assess-
ing debugging processes offers great potential for evaluating the
students’ learning progress instead of only analyzing the learning
outcome. However, we could not identify any studies that measured
the success of an intervention by analyzing processes.

For data analysis, the majority of the studies in our corpus used
an inductive approach. This result might be grounded in the history
of debugging: Debugging was developed as a necessity for software
development, and the theory was later inductively derived from
existing processes. While this is helpful for exploring a new field of
research, pure inductive approaches limit the explanatory power
of the findings. In contrast, several papers grounded their analysis
in prior research, which offers great potential for comparison and
deeper insights into debugging processes. However, most of the
deductive analyses did not consider the debugging process itself.
They rather focused on several aspects related to debugging, like
regulation strategies and debugging strategies. Interestingly, even
if investigating debugging strategies has so far been a focus of
research on debugging, there exists no comprehensive, deductively
validated overview of debugging strategies that students apply.

One of the most prominent findings of our review is the lack
of standardized approaches for analyzing debugging processes.
Numerous studies have addressed debugging behavior, but each
paper applied its own methodology tailored to the specific study
design and data set. We did not identify a single methodology
that was applied across more than one research group. Although
this variety shows the creativity of the research field, it limits the
comparability of the results across studies.

6 Conclusion

This paper presented a scoping review on how debugging processes
have been investigated in educational contexts. We identified that
typical analysis approaches use a qualitative methodology that
describes cognitive aspects of debugging processes, like the appli-
cation of debugging strategies or the debugging performance of
students. In addition, we developed a reporting scheme that can be
applied to further debugging process analyses.

Moreover, this scoping review identified several research gaps,
such as a lack of log data analysis, which would facilitate the inves-
tigation of the whole debugging process, in contrast to snapshot-
based approaches. To this end, log data analyses offer a starting
point for automated and personalized feedback to the students
while debugging.

Another possible future research direction is to assess improved
debugging not only as a performance-oriented goal but also as a
process-oriented outcome. By doing so, intervention studies should
also take changes in the processes as an indicator for learning
improvement into account.
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