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Figure 1: Three approaches to teaching about data with data cases: bottom-up, top-down, and puzzle-like.

Abstract

Data-related concepts and practices have been proposed to be a
fundamental component of artificial intelligence (AI) school edu-
cation. However, proposing concepts and practices is not enough.
To enable teachers to introduce data concepts and practices in
schools, it is necessary to understand the mechanisms that effec-
tively support the learning of these under real school conditions.
To this end, we designed and conducted a three-iteration design-
based research study in collaboration with computer science and
mathematics teachers, school students, and domain experts. In this
paper, we present the results of the research process: the developed
teaching approaches and the identified mechanisms that support
learning of data concepts and practices following a conjecture-
mapping approach. Based on the results, we explicate theoretically
and empirically sound local instructional theories for teaching data
concepts and practices in secondary school education on Al.

CCS Concepts

« Computing methodologies — Artificial intelligence; - Gen-
eral and reference — Empirical studies; « Social and profes-
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1 Introduction

Artificial intelligence (Al) is increasingly being included as a topic
in computer science (CS) school education worldwide [51]. Over the
past decade, researchers, policymakers, industry representatives,
and teachers have made significant efforts to define the competen-
cies that school students need to develop in order to live and thrive
in a world permeated with Al technologies (3, 6, 25, 29, 32, 35, 48—
51]. One central competency mentioned by these frameworks is
that primary and secondary school students should learn to design
Al systems - not to develop commercial products or put them into
service but rather to build the confidence and capacity to shape Al
for human good by understanding the principles underpinning the
design and behavior of Al (see, for example, [23, 32, 35, 37]).
From a subject-matter perspective, designing an Al system —
especially a machine learning (ML) system - requires knowledge
of the concepts and practices involved in collecting, storing, and
pre-processing data. It also requires, based on the data available
and the task, the ability to select an appropriate model architecture
and a learning algorithm [2, 9, 15, 21, 24, 27, 40]. Understanding
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the structure of the data and identifying any underlying issues is
crucial because the behavior of an ML model is heavily influenced
by its training dataset [24].

Despite its fundamental importance, the role of data in Al edu-
cation has largely been underestimated thus far [38]. Several well-
founded proposals have been made regarding the key data concepts
and practices that students need to understand in order to design
Al systems [36, 37]. However, current teaching approaches only
scratch the surface of working with data [38]. Proposing concepts
and principles is not enough. Since real school practice is impacted
by school-specific requirements and challenges — such as rigid
time constraints for teachers and students, the need to enable all
students (not just those who are interested) to learn, and limited
teacher knowledge, among other things — there is a need to develop
effective teaching approaches.

To incorporate the teaching of data concepts and practices into
Al education, we recognize two key needs. First, to support teach-
ers, we must provide proven teaching approaches for real school
settings. Second, in order to create these teaching approaches, we
need to understand the mechanisms that effectively support the
learning of data concepts and practices in real school settings.

To address these needs, we developed and evaluated a data case
study method over the past two years in a three-iteration design-
based research study. For this study, we, as CS education researchers,
collaborated with CS and mathematics teachers and domain experts
from the data science field. What follows is a report on two key
research questions that we explored during the process:

(1) Which mechanisms support students’ understanding of data
concepts and practices, as well as their motivation to learn,
and enable them to design simple ML systems?

(2) How should theoretically sound learning approaches be de-
signed for use by teachers in real school practice?

The rest of the paper is organized as follows: First, we provide
an overview of the theoretical background and related work on
teaching data fundamentals in schools. Next, we detail our method-
ological approach, explaining the phases of design-based research
and the conjecture-mapping approach. Lastly, we present the results
of the research process: three teaching approaches and the learning
mechanisms identified. Based on these findings, we propose five
theoretically and empirically sound local instructional theories for
teaching data fundamentals in secondary education.

2 Theoretical Background

To set the stage for identifying mechanisms and designing teaching
approaches, we present prior work on data concepts and practices
essential for school education on Al, the data case study as an
established method for teaching about data, and known challenges
from teaching data-related topics in schools.

2.1 Data Concepts and Practices

A large body of literature shows that working with data is an indis-
pensable and time-consuming component of creating an Al system,
particularly an ML system (see, for example, [1, 24, 42, 54]). Scul-
ley et al. vividly illustrate in their work that only a small fraction
of real-world ML systems are composed of ML algorithms. The
necessary groundwork is extensive, especially for data collection,
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analysis, validation, and feature engineering [46]. Creating ML sys-
tems requires an understanding of key data concepts and mastery
of key data practices [36, 37].

Knowing concepts is essential for communicating about ML sys-
tems. Just as describing a cell and its functions in biology lessons
requires students to become familiar with a set of terms and under-
stand their meanings (e.g., nucleus, Golgi apparatus, etc.), describing
ML systems requires students, for example, to understand the types
of data-based tasks possible (e.g., classification, regression), the
data formats used by systems (e.g., tabular, time series, image), how
and where data is stored (e.g., datasets and databases), the types
of data problems (e.g., outliers, and missing data), how the data is
transformed (e.g., cleaning and feature engineering), and how it is
used to solve a task (e.g., data flow, training, validation, and testing
data). Students must also understand how the results of models
are tested and interpreted (e.g., performance metrics, underfitting,
and overfitting). Olari et al. [36] provide further examples of data
concepts, including a definition of what a data concept is.

Knowing and understanding the concepts is not sufficient to
create an ML system; engaging in the data practices is essential.
These practices are the actions applied to or carried out with data
in mind during an ML project [37]. They include, for example,
understanding the task; creating a dataset; deciding how to store
the data; describing, exploring, and verifying the data quality; pre-
processing the data (cleaning, labeling, and engineering features);
using data to create models; preparing evaluation data; selecting an
evaluation metrics; interpreting the results of the modeling process;
and sharing, archiving, or deleting the data [12, 14, 55].

Designing an ML system requires the ability to communicate
about ML systems using key data concepts and the ability to apply
key data practices. However, a recent literature review showed
that current ML education teaching approaches only scratch the
surface of data practices, with some practices rarely or never being
addressed [38]. For these reasons, we consider the development of
teaching approaches that support understanding of data concepts
and practices to be one of the central goals of our research study.

2.2 Teaching with the Data Case Study

In academic education in Al and data science, where teaching of data
concepts and practices naturally occurs, an established teaching
method is the data case study (also known as a “case study” or “lab”).
As such, it is grounded in the tradition of constructivist, active, and
situated learning [7, 13, 20, 22, 34, 53] and requires students to solve
a data case, an authentic problematic situation accompanied by a
dataset. In the process, students apply data concepts and practices
taught in lectures, thereby developing data-based judgment and
problem-solving skills [28]. While doing so, students internalize the
fundamental importance of data for ML systems. Although several
researchers in ML school education use data cases for teaching (e.g.,
[5]), the data case study has not been explicitly investigated as a
teaching and learning method for AI school education thus far.
To enrich school education with the data case study method,
school-specific challenges need to be considered. For instance, it
is known that introducing data concepts and practices requires
novices a great mental effort as they need to divide their attention
between statistical concepts, CS, mathematics, and the domain
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where the data comes from, while considering all aspects as part of a
whole [10, 19]. The school students often do not have programming
knowledge to work with data [30]. Time constraints imposed by
schools make mastering a subject difficult. For teachers, besides
lacking knowledge, generating and maintaining motivation and
engagement among students is a challenge [14, 44].

In order to overcome the difficulties and enable active, construc-
tivist learning, researchers report positive effects from letting stu-
dents work with real-world datasets [18, 44] or letting them collect
their own data, which enhances their sense of ownership over their
learning [47]. They also report benefits from using low-code or no-
code environments [30] to enable low-floor access for all students
and from providing hands-on, module-based, iterative learning
[44], as well as project-based learning [44]. Which contexts are
appropriate for school education is a controversial issue [33]. Some
research suggests personally relevant contexts [8], such as social
media [17], sports [43], and food [30]. However, studies in the field
of data literacy report that students were uninterested in everyday
contexts [30]. Research on teaching other science-related subjects
shows that students with low interest benefit most from daily-life
and personal contextualization, while highly interested students
benefit from unique contexts [16].

Reports on teaching data concepts and practices under real con-
ditions are rare [30]. Evaluations of such interventions do not inves-
tigate which elements of the design cause learning. For this reason,
we see the investigation of learning mechanisms that the data case
study causes as another central goal of our research study.

3 Methodology

To further develop the data case study as a teaching approach
that is sound from CS education, mathematics, and domain matter
perspectives, suitable for secondary education, we needed expertise
from the CS education research, school practice, and the domain
providing the data for data cases. Therefore, we, as researchers in
CS education, built and led a research team consisting of a CS and
mathematics teacher with over 10 years of teaching experience,
a mathematics and physics teacher with over 5 years of teaching
experience, and a domain expert with over 35 years of experience
working with data in the professional context of environmental
science. The team met weekly for 1.5 years to prepare teaching
approaches and reflect on mechanisms observed in the classroom.

3.1 The Design-Based Research Process

The research process for investigating mechanisms and developing
teaching approaches was grounded in the design-based research
approach following Prediger [41]. As such, it consisted of four
closely interrelated steps, which were conducted in three cycles!:
(1) specifying and structuring the learning objectives, (2) developing
the teaching approach, (3) conducting and evaluating experiments
with the developed approach, and (4) identifying mechanisms and
developing local instructional theories about how design decisions
in teaching approaches relate to learning outcomes.

'We refer to the first, second and third cycle as T1, T2 and T3, respectively. "T" stands
for the word "trimester" — a period of three month. Every cycle lasted three months.
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(1) The first phase of each cycle involved specifying the subject
matter to be learned. To identify data concepts and practices rele-
vant to teaching the topic of ML in schools in T1, we followed the
model of data practices proposed by Olari et al. [37], who compre-
hensively analyzed the subject literature and CS school curricula on
the topic of data in school education. We also drew on the collection
of data concepts proposed by the same researchers [36]. From these
collections, we selected the central concepts and practices that are
commonly found in academic data cases (see, e.g., [53]).

(2) In the second phase of each cycle, we embodied our assump-
tions on how to support the learning of the selected data concepts
and practices in concrete learning arrangements — the data cases.
This process resulted in 18 data cases developed over a period of 1.5
years. The data cases and a detailed report on their development
are presented in Olari et al. [39].

(3) The third phase of each cycle involved teaching with the data
cases at a secondary school. The teachers from the research team
conducted the lessons. In cases where lessons had to be canceled, a
CS education researcher stepped in as a substitute teacher. A CS
education researcher and the domain expert also participated in
lessons to observe the mediating processes and collect data. They
supported the teachers, particularly in T1, when the content and
practices were still new; support decreased in T2, and by T3 the
teachers had developed sufficient self-confidence to teach the topic
independently. The study was coordinated with and approved by
the Senate Department for Education, Youth and Family in Berlin
and the ethics committee of Freie Universitat Berlin. Before starting
data collection, teachers, school students, and their guardians were
provided with comprehensive information about the study to obtain
informed consent for participation.

(4) In the fourth phase of each cycle, we evaluated the experi-
ences and developed the theory. We reflected on how the design
decisions supported the mediating processes observed under real
school conditions and whether these processes led to the expected
outcomes. As a result of this analysis, we formulated mechanisms
that supported students’ understanding of data concepts and prac-
tices and enabled them to design simple ML systems.

The design-based research postulates that discovery emerges
through change [11, p. 145]. At the end of the research project, after
we had changed the teaching approach three times and analyzed the
mechanisms, we explicated five local instructional theories. These
describe how the design of the teaching approaches supports the
learning of data concepts and practices.

3.2 Conjecture Mapping for Articulating the
Mechanisms

To make the design decisions and mechanisms explicit, we followed
a conjecture-mapping approach described by Sandoval [45]. This
approach helped us to specify the hypothesized, theoretically sound
learning mechanism in each project cycle. Figure 2 demonstrates
an excerpt from an initial conjecture map for T3.

Each mechanism comprised four elements: a high-level conjec-
ture, an embodiment, mediating processes, and outcomes. The high-
level conjecture stated how we aimed to support the learning of data
concepts and practices under real school conditions. The embodi-
ment (or design), instantiated the high-level conjecture in the form
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of a task structure, a participant structure, tools, materials, and
discursive practices. Mediating processes described the actions of
students and the artifacts that we hypothesized would be observed
in the classroom once the embodiment was implemented. Outcomes
denoted the long-term learning goals students were expected to
achieve. To hypothesize the mechanisms in the learning process, we
explicitly connected elements of the conjecture map using arrows
(see design conjectures and theoretical conjectures). For instance, as
shown in Figure 2, we hypothesized that working with a puzzle-like
data case and an unplugged version of Orange3 would lead students
to reconstruct the data processing steps in a communicative man-
ner. Repeated engagement in this process was expected to foster a
conceptual understanding of data concepts such as data flow.
After trying out the design and analyzing the mediating pro-
cesses that actually occurred as well as the learning outcomes of
the students, we created a second conjecture map presenting the
actual mechanism (i.e., what we actually achieved). The comparison
of the initial and the actual conjecture maps served as a basis for
reflection and for making changes in the next cycle of the project.

3.3 Data Collection and Analysis

To gain a comprehensive understanding of the mechanisms, we
collected data on mediating processes observed in the classroom
(weekly) and on outcomes (at the end of the course) using a mixed-
method approach [52] 2. Since we were interested in understanding
the causal mechanisms at work in real school conditions in RQ1, i.e.,
conditions that are typically complex, temporary, and contextually
variable, the theory was mostly formed by the qualitative analysis
of data [31]. This approach helped us to understand the influence
of contextual factors that cannot be statistically controlled and
the unique processes at work in specific situations [31]. Miles and
Huberman argue that “qualitative analysis, with its close-up look,
can identify mechanisms, going beyond sheer association. It is
unrelentingly local, and deals well with the complex network of
events and processes in a situation” [31, p. 147]. To ensure validity,
findings were regularly discussed within the research team and
triangulated with quantitative results. In what follows, we describe
the data collected and the data analysis procedure.

Mediating processes. The weekly data on mediating processes
consisted of artifacts produced by the students, videotaped lessons,
lesson observations (lesson observation protocol), pre-post tests on
students’ knowledge, post-evaluations of students’ motivation (M2
instrument), and semi-structured interviews with the teachers (L2).

To identify the mediating processes, a CS education researcher
qualitatively evaluated students’ artifacts and manually summa-
rized the results regarding correctness and common errors. The
researcher also evaluated motivation surveys on how students per-
ceived competency, pleasure, freedom of choice, and pressure (Ex-
ample item for pleasure: "I found the activity very interesting
Responses ranged from 1 (completely disagree) to 5 (completely
agree)). The students’ interactions with the teaching materials and
their engagement during the lessons were noted based on lesson

observations and an initial review of the videotaped lessons .

2The instruments referenced in this paper can be found in the appendix.
3A detailed analysis of the videotaped data will follow in subsequent stages of the
study.
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An essential source for understanding the mediating processes
was the teachers’ perspective. Prior research has shown that expert
teachers have a very nuanced understanding of the events happen-
ing in the classroom [26, p. 34]. To elicit this perspective from the
interviews, the CS researcher coded the semi-structured interviews
deductively according to the following categories: class average
participation, individual participation, persistence to solve the task,
distractions in the class, difficulties, students’ use of support mate-
rial, and demonstration of knowledge. Then, the researcher created
summaries for each code and memos with illustrative examples.
Text passages related to difficulties underwent additional inductive
analysis. The most common difficulties are presented systemati-
cally in Olari et al. [39]. The researcher triangulated the results
of the qualitative data analysis on mediating processes with the
quantitative analysis of the pre-post knowledge tests.

Learning outcomes. The data on learning outcomes from the
end of the course consisted of the project work submitted by the
students and results from the post-course survey on students’ per-
ceptions of teaching conditions and motivation (M3 instrument).

To assess the learning outcomes, the CS education researcher
qualitatively analyzed the students’ final projects. Understanding
of the data concepts was evaluated based on the conceptual correct-
ness of the answers in the written reports. To evaluate students’
ability to apply data practices to design simple ML systems (which
we call agency), the researcher investigated the quantity and variety
of widgets in the data flows, as well as their correctness and com-
plexity. To assess teaching conditions and motivation, we calculated
the group means for each of the following constructs: perceived
content relevance, instructional quality, teacher interest, social inte-
gration, competence support, autonomy support, and error culture.
An example item for content relevance was "The course made it clear
that the subject matter is also important in everyday life" Students
could select an answer on a scale from 1 to 4, where 1 meant "does
not apply" and 4 meant "fully applies.

Learning groups. The student groups in different cycles may
have differed substantially, limiting meaningful comparisons across
T1, T2, and T3. To examine whether the groups were comparable,
we administered a self-efficacy survey (E1 instrument) at the be-
ginning of each course. Self-efficacy refers to a person’s ability to
persist and overcome difficulties while learning [4], which is rele-
vant when acquiring data literacy (see Section 2.2). In addition, we
asked students about their prior experiences with CS, working with
data, and the broad topic of environmental science to which our
data cases belong (SE instrument). To determine if there were any
differences among the groups in each cycle, we compared the means
across the groups using the one-way ANOVA. To determine among
which groups the variances differed, we conducted a Tukey’s range
test. Information on each student’s prior knowledge was manually
extracted from observation notes and analyzed.

4 Results

In what follows, we first describe the study participants. Then, we
report on the teaching approach in each project cycle, including
findings on the mediating processes and outcomes. Based on the
findings, we formulate theoretically and empirically sound mecha-
nisms at the end of each section, thus answering RQ1.



Teaching Data Concepts and Practices in Secondary School Education on Artificial Intelligence

Embodiment Design

High-level conjecture about
Conjectures

how to support learning in
some context

Puzzle-like data
case study

Task structure

Learning through
communication
Cooperation and

communication improve
understanding of the data
concepts and practices,
enabling students to design.

e

Justify

Participant structure

i

Discursive practice

Koli Calling *25, November 11-16, 2025, Koli, Finland

Mediating processes Theoretical

Conjectures

Students are engaged and ) —
perceive the arrangement as Motivation
interesting. They are satisfied with Students feel intrinsically
their performance. motivated to learn about
~ @@

Outcomes

data.

Students execute prepared data 0\
flows, observe, interpret the results, Agency
and modify the data flows. \ Students independently
perform data analysis and
design data flows applying
data practices.
(See Olari et al. [37])

Students reconstruct the processing
steps in a data flow in a
communicative manner.

Conceptual understanding
of regression,
classification, data lifecycle,
data flow, line plot, scatter
plot, data exploration, data
quality, outlier, feature, target
feature, training and testing
data and others.

(See Olari et al. [36])

Students produce a report
interpreting the findings from the data
flow and describing its phases.

Students produce a poster with the
results of the investigation.

@

Element from:  T1 T2 T3
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4.1 School and Participants

Experiments were conducted and evaluated with the developed
approaches in a gymnasium, a school that prepares students for
higher education at the university. The school was located in an
urban area in Berlin and accommodated around 1,000 students.
Courses, in which the experiments took place, were offered for the
students in the fast-track classes, in which compulsory teaching
content is learned more quickly than in regular classes and the
students are offered such elective courses. Every course lasted three
months and was offered in the “Computer Science and Mathematics”
track. Courses in T1 and T2 lasted 48 school hours (48 x 45 minutes),
and the course in T3 lasted 46 school hours. Since CS is not a
compulsory subject in Berlin, the courses could be selected by
students with and without prior knowledge in CS.

During the selection process, 44 fast-track students in grades
9 and 10, most of whom did not choose the course as their first
preference, were randomly assigned to one of three groups. The re-
sulting groups were relatively small, which is typical for CS classes
in Germany (T1: n = 15; f = 5, m = 8, not specified = 2; mean age =
14.46 years; T2: n = 13; f = 4, m = 7; not specified = 2; mean age =
14.7 years; T3: n = 16; f = 4, m = 10, d = 1, not specified = 1; mean
age = 14.72 years).

The self-efficacy levels among students prior to taking the course
ranged from above average to rather high (T1: n = 15, mean = 3.12,
SD =0.39; T2: n = 11, mean = 2.66, SD = 0.42; T3: n = 15, mean=2.82,
SD = 0.52). Tukey’s test showed that students in T2 exhibited a
lower level of self-efficacy than those in T1 and T3, which means
that T2 students had a lower subjective belief in their ability to
overcome difficult challenges through their own actions than T1
and T3 students. There was no difference between the T1 and T3
groups. As expected, the students had heterogeneous knowledge of

CS. Nearly half of the students in each cycle had no prior program-
ming experience, though most of them had experience working
with spreadsheet programs. None of the students had in-depth
knowledge of the domain area in which the data cases were con-
textualized.

4.2 The Bottom-Up Teaching Approach

In order to enable the students to master the data concepts and
apply the data practices, the teaching approach in T1 was grounded
in the academic data case study method. To make this approach
workable in the school context, however, we adapted the method to
address known difficulties, such as heterogeneous prior knowledge
of the students in programming (challenge 1), difficulties in estab-
lishing and maintaining motivation, as identified in prior research
(challenge 2), and time constraints and a lack of domain knowledge
for both school students and teachers (challenge 3).

4.2.1 Embodiment. In the following, we outline and justify our
design decisions for the teaching approach in T1.

Activity structure. Due to the established structure of the aca-
demic data cases (see [53] for examples), the school-specific data
cases were initially constructed to be bottom-up (Figure 1, left).
The bottom-up approach began with introducing students to a data
case — a problematic situation and the dataset used to investigate
it. Then, it guided the students step by step through a solution. In
the process, the students built a data flow * and completed small,
inquiry-based tasks after each step, thereby constructing an under-
standing of data concepts and practices through direct experiences

“Data flow in Orange3 is the complete path of data from the first to the last computing
unit (called a “widget”). It begins with a widget to import the data, continues with
widgets for data exploration and data pre-processing, and finishes with widgets using
data to train an ML model and evaluate the results.
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with them. We characterized this heavily situated, active learning
approach in T1 in a high-level conjecture as “learning by imitation”

Task/materials. To appeal to as many students as possible, the
data cases used the third-party, real-world datasets from familiar
(e.g., average global temperatures) and uncommon (e.g., abalone, a
marine mollusk, from Tasmania) contexts. Contrary to the academic
data cases that expect university students to deeply familiarize
themselves with the domain, each school-specific data case began
with a one-page introduction to the context tailored to the students’
everyday life experiences. To enable all students — not only those
who had prior knowledge of CS - to apply data practices, we re-
placed the textual programming in computational notebooks such
as Jupyter Notebook with visual programming in the flow-based
data analysis environment Orange3, which is often used by school
students without prior programming or data analysis experiences
[14]. Since teaching data practices and concepts was new for the
teachers, the school-specific data cases were organized into an all-
in-one, multi-page workbook. Each student received a copy, which
allowed for largely autonomous work and reduced the teachers’
workload. The workbook contained tasks and spaces to fill in along
with the information on data concepts and on the operation of
"widgets," the computing units in Orange3.

Participant structure. Besides individual work, which is typi-
cal in academic data cases, we explicitly integrated partner and
group work into the workbooks because meaningful communica-
tion among students is a central means and goal in school education,
as was emphasized by the teachers in the research team.

Discursive practice. We facilitated discussions by asking the stu-
dents to share their results from the small, inquiry-based tasks
among each other.

4.2.2  Mediating Processes. In 24 lessons of T1, the students worked
with bottom-up data cases prepared by the research team. When
teachers reflected on mediating processes, they concluded that
it was a ‘challenge [...] to observe the learning in the students.
(L1ADay2111, pos. 99) ”. It was difficult to determine what the stu-
dents were learning and where they had difficulties (S1T1W3audltr,
Pos. 10) (challenge 4). Teachers complained that the step-by-step
instructions caused more important skills, such as reflection on the
process, to be neglected (challenge 5).

In the students’ artifacts, we observed that most students were
able to compose data flows according to instructions and complete
the inquiry-based tasks. However, the less persistent students often
worked faster than the highly persistent students, delivering su-
perficial answers and leaving out tasks (S1T1W3, Pos. 16), causing
dissatisfaction among teachers (challenge 6).

From the lesson observations, we noticed that, despite explicit
tasks for collaborative work, the students were uncomfortable en-
gaging in group work and mostly worked alone (challenge 7). The
motivational survey results indicated that the students found the
learning with data cases rather interesting, as illustrated in Figure
3. They were mostly satisfied with their performance, felt able to
choose from activities, and generally did not feel under pressure.

4.2.3 Outcomes. At the end of the course, the teachers were con-
cerned about whether students would be able to find the prob-
lematic situation on their own and create data flows from scratch
(challenge 8). Therefore, the research team heavily scaffolded the
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final projects. We provided a dataset, a context description, a list
of questions to be answered, and a list of widgets to be used. Some
students even received workable data flows.

Under these heavily scaffolded conditions, one-third (5 out of 15)
of the students did not manage to create their own data flows and
used workable data flows (challenge 9). Two-thirds (10 out of 15)
of the students succeeded in creating their own data flows, though
these were partially broken. Analysis of the project reports revealed
that most students were able to operate with the data concepts that
we covered in the course. However, the level of correctness varied
greatly (challenge 10). For example, one group correctly used the
concepts of model, correlation, feature, and target but incorrectly
interpreted the R? as accuracy ("The fourth model predicts the area
of the forest fire best. Rain, temperature, wind, and RH were used as
features because they are most strongly correlated with fires, and area
was selected as the target. However, the model is still very poor, with
an accuracy of just 13%" (Project 6).)

Despite difficulties, the group tended to agree that the content
covered in the course was relevant to their lives, the instructional
quality was rather high, and the error culture was generally positive.
The students felt more intrinsically than externally motivated, as
can be seen in Figures 4 and 5.

4.24 Mechanisms for the Bottom-Up Teaching Approach. From ob-
served mediating processes and outcomes, we conclude on three
mechanisms in T1. In a course built around bottom-up cases, in
which students compose data flows step by step according to instruc-
tions and interpret the results in context in small, inquiry-based
tasks after each step, ...

Mechanism 1: ... the highly persistent students follow instruc-
tions introducing them to specific data practices and concepts,
leading them by the end of the course to be able to create a data
flow for a given context by correctly ordering the given widgets
and articulating the results in context using data concepts. The less
persistent students also follow the instructions but skip difficult
tasks and, at the end of the course, can only articulate the results for
a data flow given by the teachers, without being able to compose
the data flows on their own.

Mechanism 2: ... the teachers have difficulties observing me-
diating processes in the classroom and, by the end of the course,
trust their students to independently conduct a project only under
heavily scaffolded conditions.

Mechanism 3: ... the motivation among the students is high. At
the end of the course, the students perceive the teaching conditions
as positive and feel intrinsically motivated to learn about data.

4.3 The Top-Down Teaching Approach

The main challenge from T1 that prompted changes of the teaching
approach in T2 was the overemphasis on step-by-step instruction,
which limited students’ reflection on the data flows (challenge 5).
The teachers argued that being able to reflect on and explain why
a particular data concept or practice is used would help students
transition to an abstract level of thinking. This would facilitate
their conceptual understanding of data concepts and their ability to
apply data practices in final independent projects. Additionally, the
teachers emphasized the need to enable not only highly persistent
students to learn but also those who are less persistent.
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Figure 3: Development of students’ motivation during T1
(above), T2 (middle) and T3 (below), where 1 means "com-
pletely disagree" and 5 is "completely agree".

4.3.1 Embodiment. In the following, we outline and justify our
design decisions for the teaching approach in T2.

Activity structure. To enable students to reflect on the process,
we transformed the bottom-up data case approach into a top-down
approach (Figure 1, middle). Top-down means that after contextual
introduction, a data case presented students with an elaborated
data flow and asked them to complete a series of interpretation
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Figure 4: Perceived teaching conditions by the students at
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Figure 5: Quality of motivation to learn by the students at
the end of T1, T2, and T3.

and reflection tasks (see the details of this approach in Olari et al.
[39], Section 4.2.2). We characterized this situated, active learning
approach in T2 in a high-level conjecture as “learning by reflection”

Task/materials. Since the students in T1 found the course content
to be relevant, we continued using the real-world datasets in the
top-down data cases. The flow-based data analysis environment
Orange3 also remained unchanged, as all students in T1 were able
to work with it. To help students understand where they were in the
data flow, each data case began with an advanced organizer display-
ing the data practices and concepts to be covered. To make mediat-
ing processes and students’ difficulties more observable (challenge
4) and enable the teacher to support the less persistent students,
the all-in-one workbook containing all the necessary information
was dismantled. Instead of a workbook, students received a one-
page protocol and interpretation cards to help them interpret the
widget results using the criteria, as well as widget cards to help
them reconfigure the widget if needed. Teachers could now quickly
assess how far the students had progressed and whether they were
having difficulties by passing through the classroom.

Participant structure. The participant structure remained largely
the same as in the first iteration.
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Discursive practices. Since we recognized the need to reflect on
the data flow, we explicitly added the instructions into tasks, forcing
students to verbalize, interpret, and justify their answers.

4.3.2  Mediating Processes. In 26 lessons of T2, the students worked
with the top-down data cases prepared by the research team. In the
interviews, teachers reported being better able to observe learning
and challenges than in T1. For instance, they realized that students
had difficulties interpreting the results of a data flow in context
(challenge 11). They also noticed that students did not understand
how debug data flows if these get broken (“They also had problems
with doing this data discovery [...]. They lack debugging strategies.”
(T2W5)) (challenge 12).

In the students’ artifacts, we saw that the students were able
to describe the results of leaf widgets on data exploration and
to reflect on the steps in the data flow. However, most students
struggled to explain why a particular ML model is suitable for a
particular type of data and to interpret the model predictions in
context (challenge 13).

From the lesson observations, we noticed that students could
execute data flows and observe the results. However, the lack of
communication (challenge 7) persisted. Similar to T1, we noticed
that the students were uncomfortable working in groups and mostly
talked only to their neighbors. In terms of motivation, the students
were engaged in the work with top-down data cases and generally
did not feel under pressure (see Figure 3).

4.3.3 Outcomes. At the end of T2, the teachers decided to give
students a less scaffolded project than in T1. Instead of providing a
detailed list of widgets for students to use, as in T1, we provided
a more general description of the data practices that should be
included in the data flow. Instead of writing a report, we asked
students to explain the data flow and results of their investigations
in a poster.

Under these conditions, all groups of students created simple data
flows without being told which widgets to use. The use of widgets
was rich and comparable to the use of widgets by students in T1.
However, the data flows were much less comprehensive. Students
in T2 used an average of 20 widgets per project, while students in
T1 used an average of 98. In terms of data practices, the students
demonstrated a general understanding of the stages of the data
flow and adequately interpreted the results. They could articulate
the results of data practices related to understanding and preparing
data. However, four of five projects had errors in their data flows
when applying data practices from the “evaluate performance” stage
(challenge 14). We made similar observations when it came to the
concepts: The students could operate with the data concepts that
we covered related to data exploration and preparation but not
with those related to using data for ML modeling and evaluation
(challenge 15).

The perceived intrinsic motivation at the end of the course was
around average, and extrinsic motivation was below average, as
can be seen in Figure 5. This means that students with average
self-efficacy levels in T2 felt similarly motivated to those with a
higher level of self-efficacy in T1.

4.3.4  Mechanisms for the Top-Down Teaching Approach. From the
observed mediating processes and outcomes, we conclude that in a
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course built around top-down data cases, with a focus on providing
an overview of the process and articulating and interpreting the
data practices and results in context,

Mechanism 4: ... students describe the results of the data flows
and reflect on the steps in the data flow while having difficulties
debugging the data flows. At the end of the course, students have an
intuition for applying data practices and creating basic data flows
for a given context without being explicitly told which widgets to
use. They articulate the results of data exploration, although they
make errors when training and evaluating simple ML models.

Mechanism 5: ... teachers are able to observe students’ difficul-
ties in the classroom. By the end of the course, they consider the
students capable of applying data practices with guidance.

Mechanism 6: ... the motivation among students with an aver-
age level of self-efficacy is rather high. At the end of the course,
students perceive the teaching conditions as positive and feel more
intrinsically than extrinsically motivated to learn about data.

4.4 The Puzzle-Like Teaching Approach

The main reason for the changes in T3 was the lack of collaboration
among students observed in T1 and T2 (challenge 7). To enable
students to apply data practices, teachers emphasized the impor-
tance of collaboration between students, in which students practice
discussing data concepts and practices to better understand them.

4.4.1 Third Embodiment. In the following, we outline and justify
our design decisions for the teaching approach in T3. An excerpt
of the conjecture map for T3 is illustrated in Figure 2.

Activity structure. To enable school students to practice data con-
cepts and foster collaboration, we developed a puzzle-like teaching
approach (Figure 1, right). Puzzle-like means that students received
a set of widgets, tables, and a set of cards for widget configura-
tion and were expected to work together without computers to
reconstruct the underlying data flow. When ready, students could
verify their solutions by constructing the same data flow in the
Orange3 data mining environment. We characterized this active,
collaborative learning approach in T3 in a high-level conjecture as
“learning through communication.”

Task/materials. The mix of the real-world datasets and flow-
based data analysis environment remained unchanged in T3. In
order to allow collaboration among students, we created Orange3-
unplugged teaching materials. These enabled multiple students to
work on the same data flow simultaneously. They could observe all
the steps and results of the data flow, which is not easily possible
in the Orange3 environment.

Participant structure. Although the general participant structure
in T3 remained the same as in T2, as can be seen in Figure 2, we made
significant changes to how students were expected to participate in
tasks, including their responsibilities. For instance, we utilized the
jigsaw teaching technique to allow students who missed previous
lessons to catch up on the data concepts and practices from their
more knowledgeable peers.

Discursive practice. We placed more emphasis on explanation and
justification through the unplugged exercise. By requiring students
to present their approaches to each other, we made it necessary for
them to justify their ideas.
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4.4.2 Mediating Processes. The students worked in 20 lessons of
T3 with the puzzle-like data cases. In four lessons, they worked
with a top-down data case. The teachers reported observing many
mediating processes happening in the classroom. They noted lively
interactions between students when reconstructing the data flows,
peer teaching, and pair programming. Compared with T2, teachers
reported being even better able to identify learning difficulties
and reported feeling able to address them without the help of the
research team. According to the teachers, the students showed
endurance, and the class average actively participated: “Well, once
again, I had the impression that everyone was actually working and
participating” (S1T3W2int2, Seg. 4).

In the lesson recordings, we observed that students explained
widgets and data flows to each other while reconstructing the data
flows. Besides improved collaboration, we observed that during the
reconstruction process, the students discovered implicit concepts,
such as the input and output data of a widget, objects that flow
between the widgets — elements that are essential for finding errors
in the data flows. With this, the puzzle-like teaching approach
addressed challenge 9, which was noticed by teachers in T2.

From the artifact analysis, we could clearly observe the mistakes
that students made in the data flows. For instance, it can be seen
in Figure 1 on the right that the students forgot to connect the
widget Tree (decision tree model on a pink background) with the
Predictions widget (crystal ball on a blue background). This type of
error — failing to realize that making predictions requires not only
the remaining data but also the trained model — was frequently
observed in other student groups as well.

The weekly surveys on students’ motivation showed that stu-
dents perceived the work with puzzle-like data cases as rather
interesting, as can be seen in Figure 3. The feeling of pressure in-
creased during the final weeks of the course, during which the
students prepared for the final project work.

4.4.3 Outcomes. In order to understand what each student knew
and could do by the end of the course, the teachers decided to
make the project work shorter and to be completed alone. The
project consisted of two parts: theoretical and practical. For the
theoretical part, the students were asked about their understanding
of data concepts such as regression, classification, and data flow.
In the practical part, the students received a dataset, a problematic
situation, and two questions. Without guidance, they had to create
a data flow that answered two questions and produce a short report
on the outcomes.

The analysis of the data flows and reports showed that all stu-
dents could perform tasks related to data exploration without guid-
ance. However, most students made errors when training and/or
testing regression and decision tree models (challenge 16). For ex-
ample, some students connected the widgets correctly, but they
selected the wrong target variable and predictors. Others tested
the model with a training dataset or selected the wrong diagram
to visualize the model training results (e.g., a confusion matrix for
linear regression). Only one student could articulate and interpret
the coeflicients of linear regression. Most students had difficulties
interpreting the decision tree model (challenge 17).

Despite them not being able to create working data flows, we
observed students trying to debug the data flows. For example, one
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student tried to understand the problem by looking at the output
of the widget in a data flow: ‘T made a change to the Data Sampler,
which is why there are 906 outputs again. However, the predictions
and the confusion matrix are still not working properly” (Student 37).

There was a noticeable drop in T3 students’ perception of teach-
ing conditions regarding content relevance and error culture in
the classroom (challenge 18). Students perceived the practical rel-
evance and course content as less significant for their personal
advancement. The quality of motivation also changed, as illustrated
in Figure 5. Amotivated learning was significantly higher at the end
of T3 than in T1 and T2. Despite increased communication among
students in T3, there were no noticeable changes in student social
integration (challenge 19).

Since there were no differences in students’ self-efficacy in T3
compared with T1, and since we observed a decline in motivation
starting in week 5 of T3, unlike T2, we conclude that the mediating
processes in T3 were less engaging than in T1 and T2. This finding
corresponded with the teachers’ views on student motivation. The
teacher repeatedly mentioned that, since the students were learning
and struggling, they perceived the lessons as less engaging.

4.4.4 Mechanisms for the Puzzle-Like Teaching Approach. From
observed mediating processes and outcomes, we conclude that in a
course built around puzzle-like data case studies, where the focus
is on a deep understanding of data concepts and practices ...

Mechanism 7: ... the students examine the data flows in a
criterion-based and communicative manner by reconstructing the
data flows, verbalizing their steps and results, articulating errors,
and verifying solutions in groups. At the end of the course, all stu-
dents are able to explore and pre-process the data using the data
practices covered in the course, while only some students are able
to use data to create ML systems without errors.

Mechanism 8: ... the teachers clearly observe difficulties and
misunderstandings about data concepts and practices among stu-
dents and feel that they are able to address those in their future
teaching. By the end of the course, they assess their students as
being capable of creating their own data flows without guidance.

Mechanism 9: ... the motivation among students with an aver-
age to high level of self-efficacy is slightly above average, and at
the end of the course, the students perceive the teaching conditions,
such as content relevance, as neutral, while being more extrinsically
than intrinsically motivated.

5 Discussion and Local Theories

In this study, we investigated mechanisms that help students un-
derstand data concepts and practices, as well as motivate and en-
able them to design simple ML systems. Based on the described
approaches, challenges, and mechanisms, we explicate five local
instructional theories (LIT) about which design features are suitable
in which learning situations, thus answering RQ2.

After testing different approaches with students and analyz-
ing the mediating processes and outcomes, we identified three
approaches of the data case study method as being suitable for
schools: top-down, bottom-up, and puzzle-like. In T1, students
learned with the bottom-up data cases, in T2 with the top-down
data cases, and in T3 with the top-down and puzzle-like data cases.
All three approaches allow students to go through the data flow,
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independently discover insights, and thus learn about data concepts
and practices in a practical way in the classroom. Although the
approaches were developed sequentially, the mechanisms that they
cause show that the approaches are equally valid. One approach
cannot overcome all challenges at once. Depending on the learning
objective and class, the teacher can decide which approach to use
in the classroom. Some challenges, such as a lack of programming
skills (challenge 1), are addressed by all of them. Others, such as re-
flection on the process (challenge 5), are better served by one of the
three approaches. LIT1: All three data case study approaches are
appropriate for the classroom, provided that the groups of students
are relatively small, have mixed prior knowledge of CS, an above
average level of self-efficacy, some experience with spreadsheets,
and a basic understanding of the domain that the data comes from.

The deeply contextualized, bottom-up data case approach guided
students through data practices and concepts step by step. While
the students found this approach interesting, the only mediating
process we observed was their ability to compose data flows accord-
ing to instructions and interpret the results in context. Observing
this process is insufficient to determine what is difficult for students
or what they do not understand. After engaging with the data cases
multiple times, only highly persistent students were able to create
their own data flows for a given context by correctly ordering the
provided widgets under heavily scaffolded conditions. Students
mostly worked quietly and alone. LIT2: If the goal is to motivate
students to learn about data by deeply embedding content into
the subject matter and providing a step-by-step introduction to
a specific data concept or practice, and if the students are highly
persistent and able to work independently, then the bottom-up ap-
proach is an appropriate choice for teachers. This approach requires
teachers to proactively monitor students’ progress, as working with
bottom-up data cases does not provide much insight into the me-
diating processes, and students’ difficulties are not immediately
apparent (challenge 4).

The deeply contextualized, top-down data case approach pro-
vided students with an overview of a complete data flow, guiding
them to reflect on and critically evaluate data practices. Students
found working with top-down cases motivating. When students
focused on critically reflecting on the data flow and getting an
overview of the concepts and phases, they could create data flows
for a given context by determining which widgets they needed
based on the description of the sub-steps. LIT3: If the goal is to pro-
vide intuition for designing a simple ML system, from loading data
to interpreting results deeply embedded in the domain, to reflect
on the appropriateness of the data practices based on criteria, or
to motivate students, and if the students have an average level of
self-efficacy, then the top-down data case is an appropriate choice.
There is less teacher involvement than in the bottom-up data case
because the teacher can immediately monitor how far the students
have progressed on the one-page data case and if they need help.

In the puzzle-like approach, students reconstructed a data flow
from given elements in collaborative work, without the use of com-
puters. Although this approach was not ranked highest in motiva-
tion surveys, it was the most useful for teachers to observe learning
and identify students’ difficulties. Teachers also generated ideas
on how to address these issues. When students reconstructed the
data flows, they could develop skills necessary for independently
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applying the data practices to construct the data flows. Despite
these advantages, students perceived the content relevance of the
puzzle-like data case as less significant and felt more externally
than internally motivated. LIT4: If the goal is to enable students
to practice articulating data concepts and practices, help teachers
understand difficulties and misunderstandings that students have
about them, teach a deep understanding of implicit data concepts
explicitly, and teach skills for identifying errors in data flows —
skills that are critical for the ability to apply data practices to cre-
ate simple ML systems independently — and if the students have
above-average self-efficacy, then a puzzle-like data case is an appro-
priate choice. The cost for teaching with this approach is students’
superficial understanding of the context, lower perception of the
content relevance, and lower intrinsic motivation (challenge 18).

In all three cycles, students were engaged and designed their own
ML systems within a flow-based environment. This environment
provided all our students with low-floor access to data practices
and allowed them to create simple and complex ML systems, thus
addressing the challenge of heterogeneous programming knowl-
edge. The final projects submitted by the students were all different.
LIT5: A flow-based programming environment, such as Orange3,
is powerful enough to support many paths and styles. As a con-
structionist environment, it can serve as a foundation for learning
data concepts and practices through design.

Based on these findings, if the goal is to motivate students to
learn about data while fostering agency in a real school setting,
enabling students to independently conduct data practices in a
project and interpret the results of their work, then building a
course around top-down and puzzle-like architectures in a data-
flow environment, such as Orange3, is particularly promising. The
approaches address the reported challenges of teaching data con-
cepts and practices, help students develop problem-solving abilities,
and adhere to school-specific learning goals, such as collaborative
learning.

6 Conclusion

Investigating mechanisms is a time-consuming, iterative process
that requires significant effort. To understand what works and why,
one must change the conditions, observe the challenges, and reflect
on them. In our study, we provided insights into how the investiga-
tion of mechanisms can be conducted using a conjecture-mapping
approach. Based on the results, we outlined nine empirically and
theoretically sound mechanisms for teaching data concepts and
practices in secondary school AI education and explicated five
local instructional theories. Future research should focus on under-
standing how combining the proposed teaching approaches can
effectively contribute to students’ ability to design ML systems
using data practices and concepts.
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