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A B S T R A C T

Due to advances in Artificial Intelligence (AI), computer science education has rapidly started to include topics
related to AI along K-12 education. Although this development is timely and important, it is also concerning
because the elaboration of the AI field for K-12 is still ongoing. Current efforts may significantly underestimate
the role of data, the fundamental component of an AI system. If the goal is to enable students to understand how
AI systems work, knowledge of key concepts related to data processing is a prerequisite, as data collection,
preparation, and engineering are closely linked to the functionality of AI systems. To advance the field, the
following research provides a comprehensive collection of key data-related concepts relevant to K-12 computer
science education. These concepts were identified through a theoretical review of the AI field, aligned through a
review of AI curricula for school education, evaluated through interviews with domain experts and teachers, and
structured hierarchically according to the data lifecycle. Computer science educators can use the elaborated
structure as a conceptual guide for designing learning arrangements that aim to enable students to understand
how AI systems are created and function.

1. Introduction

Advances in Artificial Intelligence (AI) over the past few decades are
increasingly changing the technology landscape. Software that works
with data is gaining the ability to generate new content, predict future
events, and make suggestions tailored to user profiles, among other
things. To address these developments and prepare society to respon-
sibly work with and shape AI technologies, AI is increasingly introduced
as a topic in computer science education around the world. However,
before introducing a new topic for teaching, it is essential to identify its
central concepts [1].

In computing education research, there is a strong consensus that
teaching should focus on key concepts of the subject rather than on
short-lived technological developments. For this reason, catalogs of
ideas, concepts, and principles of computer science and its subfields
have been developed over the past decades. Well known are, for
instance, Fundamental Ideas of Computer Science [2], Great Principles
for Computing [3], Big Ideas in Computer Science for K-12 education
[4], and Key Concepts of Data Management [1]. These catalogs provide
insights into key aspects of the field and can be used to prepare topics for
teaching or as a basis for developing computer science curricula [1].

For the area of AI, the conceptualization of the field for K-12 is still
ongoing. Several catalogs of competencies, ideas, and design principles

have been proposed [5–8]. However, systematization of the field with
respect to data, the most fundamental component of AI systems, that
educators can draw on when planning lessons, is still lacking [9]. When
teaching students about the functionality and limitations of AI systems,
the role of data is of significant importance [10–13].

In order to expand the knowledge of data-related concepts in AI for
school education, we conducted a theoretical analysis of the AI field,
corroborated the results with experts, and contrasted the findings with
AI school curricula. The following overarching research question with
two sub-questions guided us through the process:

RQ: What data-related concepts are essential when creating an
AI system in the context of AI education for K-12?

• What are essential concepts related to data processing when creating
an AI system?

• How can the identified concepts be aligned with AI education in K-
12?

The reminder of the paper is organized as follows: First, we present
the theoretical foundations of our work. In Section 2, we discuss the role
of data in the development of AI systems. In Sections 3 and 4, we review
previous theoretical work on data-related AI education for students and
on characterizing a subject area through underlying concepts. In Section
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5, we outline the details of the methodology for identifying key con-
cepts. In Section 6, we present and explain the key data-related concepts
that were identified from the theoretical analysis of the field and aligned
with previous AI curricula. In Section 7, we discuss our findings and
suggest the directions for future research.

2. Data as a core component of AI systems

Data is a core component of software using AI techniques, which
include machine learning approaches such as supervised, unsupervised
and reinforcement learning, logic- and knowledge-based approaches
among others [14]. Supervised learning techniques learn pattern in
labeled data with a goal to generalize the pattern for the unseen data.
Unsupervised learning techniques work with unlabeled data to separate
it into groups that share common characteristics [15]. In reinforcement
learning, an agent produces data though the interaction with the envi-
ronment and learns from these data to perform better actions. In systems
using logic- and knowledge-based approaches, the data is manually
handcrafted with a goal to represent it as a knowledge, use this
knowledge to process new data and derive new facts [16]. At machine
level, data is stored digitally on a device in binary values. It comes from
different sources, including sensors, machines or humans and at the
application level, is represented in different modalities - such as text,
image, audio, table or graph.

Understanding how data is processed is essential to understanding
how AI systems work, and how reliable they are [10–13]. For logic- and
knowledge-based AI systems, the importance of inclusion of multiple
data sources and experts during the knowledge acquisition phase to omit
bias [17] are known for many years [16,17]. In context of machine
learning, research direction of data-centric AI emerged recently [10,11,
18]. Compared to the model-centric machine learning, which focuses on
identifying more effective models to improve performance of machine
learning applications while leaving the data unchanged, data-centric
researchers argue that systematic engineering of the data is a key to
building an accurate machine learning system [12]. A spectrum of tasks
of the data-centric machine learning includes data preparation, data
augmentation, data quality assurance, error analysis [13], output
monitoring and interpretation [19] among others.

The data processing steps during the development and deployment of
AI systems have been described in life cycle models [19–23] with
Cross-Industry Standard Process for Data Mining (CRISP-DM) model
being one of the industry and academic baselines [19]. CRISP-DM model
is an industry-, tool-, and application-neutral model that provides a
blueprint consisting of six key stages: business understanding, data un-
derstanding, data preparation, modeling, evaluation, deployment [15].
Because data processing continues after the deployment of an AI system
[21,24], in addition to these six stages, it is necessary to consider the
inclusion of data collection, monitoring, sharing/archiving/deleting
data as essential components of the data lifecycle.

3. Introducing AI as a topic in computer science school
education

AI is increasingly being included as a topic in K-12 computer science
curricula around the world. By 2021, AI curricula in school education
have been endorsed by the governments of 11 UNESCO member states at
various levels of school education [25]. Policymakers are also updating
digital education recommendations. For example, the European Union
recently published an update of the European Digital Competence
Framework, DigComp 2.2. The document includes a list of more than 80
examples of knowledge, skills, and attitudes related to citizens inter-
acting with AI systems [26]. In comparison, the first version from 2013
did not include any of these [27].

While these developments are timely and important, they are also
concerning because the elaboration of the field of AI for K-12 is still
ongoing. Since 2015, the body of research on AI education has been

growing rapidly [28]. Researchers are developing and evaluating new
tools [29], and experimenting with teaching the inner workings of AI
algorithms [30–32]. However, elaborated competency models are just
beginning to emerge [6,8,33]. Few studies target computer science
students, who are expected to engage more deeply with the subject than
students in other disciplines [34]. As AI technologies bring several
fundamental changes to software development [7], there is still much
work to be done. Currently, little research has focused on understanding
the enduring key concepts of AI for K-12 [5], a step that is important
before introducing new topics into computer science curricula.

4. Characterizing the AI field for K-12 through concepts

Characterizing a domain by concepts and underlying ideas has a long
tradition in the sciences and has become a common approach in com-
puter science [1,3,4]. In the sciences, concepts are described as sys-
tematic mental representations of the real world [35]. They can be
observable (e.g., ”mammal”), unobservable (e.g., ”atom”), or they can be
related to processes (e.g., ”photosynthesis”). In computer science, con-
cepts have been described in terms of ideas and principles. For example,
Schwill suggests that a fundamental idea in a domain is a schema for
thinking, acting, describing, or explaining [2]. As such, it must be
applicable or observable in multiple ways in different areas of the
domain, can be demonstrated and taught at any intellectual level, can be
clearly observed in the historical development of the domain, and is
related to everyday language and thought. Denning emphasizes that
besides focusing on lifeless and abstract concepts, it is essential to cap-
ture the principles - the mechanics of a discipline, the principles of design
distilled from recurring patterns observed in practice (e.g., program-
ming, engineering, innovating) [3]. Another important feature is that
conceptual knowledge is product independent [36]. It enables students to
understand a subject in a broader context and to transfer skills.

In AI education, several proposals have been made to capture the
essence of the AI field for K-12. Touretzky et al. proposed a set of five big
ideas [5]. The ideas focus on essential capabilities of AI systems such as
perception, representation, reasoning, learning, natural interaction and
societal impact. Tedre et al. elaborated on conceptual shifts in compu-
tational thinking for K-12 education and showed differences between
traditional programming education and education focused on building
machine learning models [7]. In addition to these systematizations of
the field, a number of competency models for AI education have been
proposed [6,8].

All these elaborations emphasize the role of data in AI systems. For
example, the Big Idea ”Learning” encourages students to understand
that computers learn from data and that machine learning is about
statistical inference that finds patterns in data [5]. There is also an
emerging line of research exploring the role of data literacy and data
agency in learning about AI [37,38]. However, a recent literature review
concluded that teaching approaches only scratch the surface of working
with data, and competency models for data literacy, while providing a
foundation for working with data in the context of AI, lack concepts
inherent to AI technologies such as model development [9]. For these
reasons, we see an urgent need to advance the field of AI education by
systematizing it from the perspective of its fundamental component -
data.

5. Methods

The objective of this work is to identify data-related concepts that are
central to the creation of an AI system and that can be used by educators
to structure AI education curricula and plan lessons. To achieve this
goal, the following steps were necessary: (1) criteria-based specification
of the construct ”data-related concept”, (2) systematic analysis of the
domain and extraction of potential concepts from the literature, (3)
alignment of the concepts identified in the literature with K-12 AI ed-
ucation, (4) evaluation of the aligned concepts with the domain experts
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and teachers. The process was iterative, as shown in Fig. 1. In the
following, we report details on each of the stages.

5.1. Criteria-based specification of the construct "data-related concept"

For systematic identification of data-related concepts in literature,
the construct ”data-related concept” must be characterized through
criteria. Following the characterization of a concept in sciences, as
outlined in Section 4, and the data lifecycle model that is used as a
blueprint to process data in AI projects, as described in Section 2, a data-
related concept instantiates in a term that, in the specialist community of AI
and data scientists, is used as a placeholder to describe a certain process (e.g.,
data augmentation), an observable entity (e.g., image) or an unobservable
entity (e.g. data modality) which is related to data processing at one of the
following stages of the data lifecycle: understand the task, collect data, un-
derstand data, prepare data, implement solution, evaluate performance,
deploy and monitor, share/delete/archive data. Following this specifica-
tion, IP Protocol would not be regarded as a data-related concept as it is
primarily used in the context of routing data packages across networks
and does not directly relate to one of the stages of the data lifecycle [39].
Data labelwould be regarded as such because it is a critical component in
the data preparation stage. During this stage, annotators provide
meaningful labels to data when preparing it for use by an AI algorithm
[23].

The concept is considered as central if it fulfills three criteria derived
from prior research in computer science education, as described in
Section 4:

1. Product independency. The concept must be independent of a
product. For instance, Apache Hadoop [40] does not fulfill this cri-
terion, as it stands for a concrete software library. However, distrib-
uted data storage fulfills it.

2. Time stability. The concept must be observable in the historical
development of the domain. For instance, prompting does not fulfill
this criterion, as it become popular recently [41] and is unclear
whether it remains relevant over time. Hypothesis testing fulfills this
criterion because it is a concept known for years from the field of
statistics and still relevant in the AI and data science field [42].

3. Conceptual clarity. The concept must be universal and unambigu-
ous. For instance, Frankenstein dataset does not fulfill this criterion
because besides describing a dataset that combines data from
apparently distinct sources while being from the same source [43], it
can also describe a dataset made of synthetically generated data
[44]. Redundant data and synthetic data [13,45] fulfill this criterion,
as these are more universal and conceptually clear concepts.

5.2. Systematic analysis of the theoretical literature and extraction of
potential concepts

Identifying concepts is challenging for several reasons. First, the
concepts are not readily apparent because they can be found at different
levels of abstraction, ranging from highly technical terms (e.g.,
discriminative feature) to more abstract theoretical ideas (e.g., data pro-
tection). Second, advances in AI technologies and data science are
constantly introducing new concepts (e.g.,MLOps [46]), which increases
the complexity of identifying stable, long-lasting concepts. Therefore,
deep immersion in the domain is required to ensure comprehensive
understanding and identification of essential concepts. We began the
process with an in-depth analysis of the theoretical sources on data
processing in the development of AI systems. For selecting the literature,
we followed the purposeful sampling strategy since our objective was
neither to include all existing relevant studies (exhaustive strategy) nor
to identify all relevant studies withing specified limits (selective strat-
egy) [47]. Purposeful sampling strategy aims to find information-rich
studies, in our case, studies with a high density on data-related con-
cepts in AI system development. From the different strategies that pur-
poseful sampling offers, we mostly used theory-based construct
sampling, criterion sampling and snowballing, starting with reviewing
standard textbooks used in the university education for AI and data
science [16,23,48]. We additionally conducted a search at ACM,
SpringerLink and ScienceDirect databases with a combination of the
keywords ”data”, ”data lifecycle”, ”data-centric AI”, ”data processing”,
”Artificial Intelligence”, ”machine learning”, ”knowledge-based” to find
academic papers describing data processing for systems built with both
machine learning and logic- and knowledge-based techniques [1,10,11,
13,19–22,24,49–53]. In order to include practical perspectives, we also
reviewed grey literature that was recommended by AI practitioners [12,
15,54–59].

While engaging with the sources, for each of the stages of the data
lifecycle, we manually extracted an initial list of potential concepts
along with their descriptions ending up with a document of 111 pages,
including descriptions of 84 data-related processes, technologies and
technical vocabulary among others.

To clarify the relationships between potential concepts and identify
redundancies, we mapped the concepts in a hierarchical order consid-
ering the occurrences of concepts in the data lifecycle and grouping
them into categories. This iterative process involved extensive consul-
tation of additional theoretical literature, continuous revision, rear-
rangement and amendment of potential concepts, as well as the
evaluation of terms that did not meet the criteria described in Section
5.1 for conceptual counterparts. For instance, feature selection and
feature extraction were mapped as subordinate concepts of feature engi-
neering. During the consultation of additional literature, we identified
that additional subordinate concepts are relevant for feature

Fig. 1. Overview of the analysis process.
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engineering such as feature transformation and feature reduction and
included them into the collection. General Data Protection Regulation
GDPR was replaced by data-related legal regulation. We continued to
refine our collection, until we reached a point of theoretical saturation
[60] and existing concepts began to recur. This saturation indicated that
our collection of potential concepts was comprehensive and relevant for
representing data processing in AI systems.

5.3. Alignment of concepts identified in the literature with AI education
for K-12

To adapt the collection of potential concepts embodying a profes-
sional perspective on data processing for the use in K-12 education, an
alignment was necessary. The alignment ensures that initial collection
adequately includes data-related concepts already present in AI educa-
tion for K-12 and does not miss any essential concept. It also highlights
gaps if a concept is present in the collection but absent in AI education
for K-12.

To identify data-related concepts in AI education for K-12, we
focused on analyzing AI curricula for K-12 education because they
provide a strong body of accumulated knowledge of what researchers,
teachers, and practitioners consider to be important for school students.
To conduct the alignment, four steps were required: (1) collection of AI
curricula for K-12, (2) identifying of data-related sections in AI
curricula, (3) extraction of data-related concepts from the data-related
sections, (4) merging the data-related concepts from the literature
with data-related concepts identified in the AI curricula.

To collect AI curricula for K-12, similar to identifying the subject
literature, we followed the purposeful sampling strategy since our
objective was not to include all existing AI curricula for K-12 [47].
Instead, we aimed to find information-rich curricula that included a
substantial description of competencies and learning activities. From the
strategies that the purposeful sampling offers, we mostly used the
snowballing [47], starting with a review of papers identified in a recent
comprehensive literature review on AI education for schools [61]. We
included papers for further processing if they contained a description of
what and how the students should learn [33]. We also included the two
most recent AI curricula that we were aware of from our previous
research. After retrieving and closely reading the papers, we excluded 53
papers due to missing curricula, leaving a total of 49 papers. From each
paper, we extracted a curriculum, resulting in a large text corpus1.

In order to identify data-related text sections, we iteratively searched
the corpus for the inclusion of keywords used in the context of data
(information, input, file, image, picture, foto, photo, photograph, figure,
text, digit, word, message, post, sound, recording, audio, music, tone,
speech, song, video, graph, time series, time, date, spatial, table, num-
ber, numerical, survey, content, char, string, integer, boolean, float,
array, list, map, dictionary, tuple, vector, matrix, binary, feature, cate-
gory, class, object, pixel, N-Gram, tf-idf, DNA, variable, output, predic-
tion, classification, recommendation, clustering, categorization,
sequence, population, sample, observation, instance, point). If the sen-
tence contained one or more of the keywords, we auto-coded the sen-
tence as data-related by using the MAXQDA software.

To extract the concepts from the data-related text sections, we
reviewed each sentence and labeled it with one of the stages of the data
lifecycle. From the labeled sentences, we extracted the data-related
concept following the criteria defined in Section 5.1 and structured
the resulting collection hierarchically. Subsequently, we contrasted the
results with our initial collection.

To merge the collections, if the initial collection did not contain a
concept, we consulted the literature to understand the relationship be-
tween the newly found data-related concept and the concepts present in
the initial collection. Our aligned collection of potential concepts

included concepts found in both the theoretical literature and AI
curricula, concepts found only in AI curricula, and concepts identified
only in the theoretical literature.

5.4. Corroborating the results with domain experts and computer science
teachers

Relying on the literature can be insufficient, and reducing
complexity is a critical step in preparing content for teaching in K-12
computer science education. For these reasons, the collection of poten-
tial concepts had to be evaluated by experts for soundness and repre-
sentativeness, and by computer science teachers for its suitability for
classroom use.

For the soundness evaluation, we presented the collection to a data
scientist, a domain expert in using AI for climate research, and a data
literacy researcher. Two experts provided written feedback, and one
provided feedback in an informal interview. All experts welcomed the
collection, agreed with its general representativeness, and made addi-
tional suggestions to make it more comprehensive. The collection was
subsequently updated.

In order to include the practical perspective as much as possible and
to reduce the complexity of the collection, we involved computer sci-
ence teachers. At several stages of the process, we demonstrated versions
of the collection to four teachers to understand its general suitability for
use in computer science classes and informally discussed their feedback.
Teachers expressed the need to include more concrete concepts because
the abstract concepts are difficult to teach. They also expressed the need
for the collection to be accompanied by coherent examples of how these
concepts can be incorporated into a series of lessons.

6. Results

The research resulted in a comprehensive collection of key data-
related concepts for AI education in K-12 computer science classes, as
illustrated in Fig. 2. The collection is described in detail in the sections
that follow. Each section is organized similarly. First, we provide a
context for the concepts, highlighting their significance in the overall
process of developing AI systems. We then present selected data-related
concepts and outline the relationships between them.

6.1. Concepts related to task understanding

Before working on any project that involves the use of AI techniques,
it is critical to understand the problem that will be solved using AI. This
includes understanding the nature of the task (concept data-based task),
the specifics of the available data (concept data modality), the roles and
needs of the stakeholders (concept data stakeholder) and defining when
the task is complete (concept success criterion).

AI technologies can be used to solve a variety of data-based tasks. In
AI curricula, we identified mentions of tasks such as regression [8,25,
62–64], classification [25,33,62,63,65–74], detection and localization
[64], segmentation [63], image generation [75], text generation [68,
76], audio generation [73], machine translation [68,76], speech
recognition [76], text summarization [76], conversational interaction
[76], recommendation [69,77,78], reasoning [6,8,33,34,63,64,68,76,
78,79], and others.

From the subject perspective, there are many more tasks that can be
solved with AI technologies. Theoretical literature suggests that any
data-based task [57] can be conceptualized in terms of an input space and
an output space. For instance, in a speech recognition task, the audio
signal in the input implies a text transcription in the output [80].
Different data-based tasks have unique data requirements [15,19,81,
82]. For example, a classification task requires labeled data as the input.

When students learn about AI, they discover that AI systems can
work with various types of data, including image data [25,63–66,75,77,
83–85], text data [25,62,65–68,76,86,87], tabular data [77], audio [64],1 The text corpus is available upon request.
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video [88], and graph data [68]. Other types of data common in practice
are time series and geo-spatial data [89]. An essential idea suggested by
practitioners is that the choice of data modality, defined as a particular
way or mechanism of encoding information [90], influences the

selection of data cleaning and pre-processing methods. For example,
when working with image data, machine learning techniques require
images to be rescaled and pixel values to be represented as vectors
before the data can be processed by the algorithm.

Fig. 2. Overview of the key data-related concepts for creating AI systems along the data lifecycle.
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While several AI curricula suggest that school students create and use
datasets to develop their own AI applications [62,63,69,78,88,91–94],
we found a lack of references on students analyzing stakeholder needs
and formulating success criteria, as is common in practice and theoret-
ical literature [55]. A success criterion states precisely and clearly when
the task is completed. It must reflect the needs of stakeholders, including
those who will use or be affected by the implemented solution (users),
those who provide data to create the application (producers) and those
who will leverage the data to create the application (agents) [89]. For
instance, users of AI-based systems might be interested in how the data
was used to create an AI system. They can require a set of explanations
and controls grounded within product experiences.

6.2. Concepts related to data collection

Data collection is a fundamental step when creating an AI system.
The data can be either collected for the specific purpose of the task
(concept primary data) or it can be repurposed (concept secondary data).
Common methods of data collection include automatic techniques (e.g.,
concept scrapping), human-involved approaches (e.g., concept crowd-
sourcing), generating data through simulations (e.g., concept artificial
data generation).

In the AI curricula, we identified references to automatic data
collection (students should explain how AI systems collect data via
sensors [8]) and human-involved data collection (e.g., students should
create labeled datasets [64]). Collection of primary data, while
time-consuming, ensures that the data precisely meets the requirements
of the specific task. Conversely, utilizing secondary data, which is
pre-existing, can be more convenient but poses risks such as data being
outdated or misaligned with the tasks specific requirements [59]. The
chosen data collection techniques can have a significant impact on the
quality of the data and, consequently, on the performance of the AI
system. For example, crowdsourcing as a data collection method,
involving many individuals [54] without a standardized strategy, can
result in a dataset requiring extensive cleaning and preparation, thereby
affecting the efficiency and accuracy of the subsequent AI application.

6.3. Concepts related to data storage

Data used for the development of any AI system, must be digitally
stored (concept data storage). Because AI systems process data of
different formats (concept data format), they have specific data storage
requirements.

AI curricula suggest that students should be familiar with simple
databases [25,79] and relational databases [25]. They also suggest stu-
dents to understand advantages and disadvantages of cloud storage
[25]. From the subject perspective, relational databases have several
limitations for AI systems [56], as they primarily store tabular data
(structured data), require definition of an exact scheme before storing
any data and are not easy scalable if the data volume is too large to be
stored on a single server.Non-relational database systems overcome these
issues [56], as they handle unstructured data such as images and texts and
semi-structured data such as XML files and are scalable through a
distributed storage system. The data models in non-relational database
systems are more flexible, so that additional data can be included
without having to make changes to the overall schema of the database.
The data stored in a database is accessed and manipulated through a
corresponding database management system.

6.4. Concepts related to data exploration

The data collected in the data collection step is not ready to be used
by an AI technique (concept raw data). Understanding the errors in the
data (concept data noise), the origins of the data (concept data prove-
nance) and the characteristics of the data (concept data composition) is
essential to anticipate and resolve data-related problems early, which

directly affects the quality and functionality of the final AI system. Data
exploration requires knowledge of basic statistical concepts (concept
data analysis) and various visualization techniques (concept data visu-
alization). The result of data exploration is the knowledge about re-
lationships in the data, its problems, and assumptions about the task
[95].

In the AI curricula, we identified several references to the data
exploration step. For example, school students should understand the
concept of messy data [6,25], be aware of data origins [25,91], analyze
datasets [64], understand data trends [25], find patterns in data and
irrelevant correlations [63], create data visualizations [96] such as
simple charts [25] and graphs [97].

From the subject perspective, data collected during data collection is
raw data, meaning it is not yet ready to be used by an AI system. It is
messy because it contains noise such as missing data (incomplete values),
wrong data (erroneous values), duplicate data and redundant data [57]. All
of these issues need to be addressed before the data is used by an AI
system.

To avoid problems with AI systems being built on identical or
overlapping datasets while assuming they come from distinct sources
[43], it is important to understand the data provenance - the origin and
previous processing of the data, including information about the data
license, ownership, and metadata. Metadata might include information
regarding the documentation of data collection and pre-processing
techniques including demographics such as who collected the data
and who funded it [98].

To understand the structure of the dataset, its typical data entries,
outliers, and patterns within the data, and to gain an intuition about
potential data-related problems [99], the data composition is explored
using statistical methods [100]. Depending on the data modality, the
data analysis and data visualization may differ. For example, when
working with tabular data, data analysis involves calculating the cor-
relations between variables (bivariate and multivariate analysis) [100]
and visualizing the distribution of the variables to understand the po-
tential skews in the data (univariate analysis).

6.5. Concepts related to data quality control

High quality data is essential for reliable AI systems [13,54]. Veri-
fying data quality involves understanding the consistency of the data
(concept data reliability), the representativity of the data (concept data
fidelity), the accuracy of the data (concept data validity) and identifying
any imbalances in the data (data bias).

AI frameworks mention some aspects of data fidelity, such as data
representativity [63], dataset size [25,63,64,101], data reliability, such
as homogeneity [102] and data validity such as quality, authenticity, and
accuracy of training data [33,91]. Although many AI curricula mention
bias [6,8,25,63–65,67,69,71,72,77,85,102], we did not find any
occurrence of bias in the context of the data-related concepts.

From the subject perspective, data is high quality when it accurately
represents a phenomenon, is collected, stored, and used responsibly, is
maintainable over time, is reusable across applications, and has empir-
ical and explanatory power [49]. In this context, data fidelity describes
how well the dataset represents the reality. Data reliability illustrates
data consistency, replicability and reproducibility of data. Data validity
indicates how well the data explains things related to the phenomena
captured by the data [49]. Imbalances in data are one of the sources of
bias in AI systems. Therefore, when verifying data quality, data should
be inspected for biases such as representation bias, which arises from how
data is sampled from a population during the data collection process
[103,104].

6.6. Concepts related to data preprocessing

In order to avoid creating distorted AI systems that can cause harm,
issues identified in the earlier stages of the data lifecycle must be
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resolved during the data preprocessing step [12,105]. Data preprocess-
ing includes several key operations, such as data correction (concept
data cleaning), data labeling for tasks requiring labeled data (concept
data labeling), increasing the size of the dataset if the original set is
insufficient (concept data augmentation).

AI curricula suggest that students should be able to correct the
dataset [106]. However, we did not find any further references to
practices of data cleaning. From the subject perspective, the cleaning
strategy depends on the data modality and the data-based task. For
example, for tabular data, values imputation with mean or median, pre-
diction of missing values using a regression model, duplicates removal are
common [12]. For text data, typical cleaning strategies include splitting
the documents into words, removing punctuation and symbols, making
all words lowercase, removing stop words, and stemming words [107].
For image data, noise, blur, and distortion are removed using image
restoration, which attempts to recover a degraded image by modeling the
degradation with prior knowledge [95].

If the dataset size is small - which is an issue for many data-based
tasks - data augmentation can be used [12]. We found one cursory
reference to data augmentation in the prior AI curricula [72]. From the
subject perspective, data augmentation is a technique to increase the size
and diversity of data by artificially creating variations of the existing
data. Common approaches for data augmentation are basic manipulations
(e.g., scaling, smoothing, rotating, sharpening, contrast enhancement
for image data [95]), generating synthetic data that closely resembles the
existing data. At this stage, actions can be taken to handle data bias by, e.
g., balancing the data distribution for the minority class (concept reba-
lancing, including upsampling and undersampling), as suggested by prior
theoretical literature [12] and the experts from the AI field.

AI frameworks refer to the concept of data labeling [63,68,71,101].
We did not find any references to label quality, labeling strategy, and other
essential concepts during this process. Data labeling refers to the process
of assigning one or more descriptive tags (labels) to the data entries in a
dataset [12], and is required for data-based tasks such as classification,
regression, detection, and localization. Labels are created by annotators
[12]. To avoid labeling errors and to ensure the label quality, a labeling
strategy is needed. For example, when conducting labeling of images, the
annotator needs to know whether an image label annotation is sufficient
or whether a precise object shape annotation is required.

6.7. Concepts related to data construction

For data-based tasks using machine learning techniques, having
clean and preprocessed data alone is insufficient for effective use by an
AI algorithm. The data must be transformed into a format that the al-
gorithm can process, a process known as feature engineering [58]
(concept feature engineering). This involves a comprehensive under-
standing of what constitutes a feature (concept feature, concept feature
characteristic), and the methods for representing the feature in a way that
is compatible with the AI algorithm (concept feature representation).

AI curricula operate with the concept of feature in multiple contexts,
such as feature vector [68], multi-dimensional feature space [68,108],
feature selection [63,71], feature design [92], feature extraction [64,
71], feature encoding [63]. From the subject perspective, a feature is a
numeric representation of data [57] and can be discrete, continuous, or
complex [109]. A single numeric feature is a scalar. An ordered list of
features is known as a feature vector. Feature vectors sit within a feature
space, which is a vector space. The input to a machine learning model is
represented as a feature vector [57]. Features are closely tied to the
model, as some types of models are more appropriate for some types of
features than others [109]. In regression and classification tasks, a target
feature is a feature that is to be predicted with a subset of other features,
also called explanatory variables, dependent variables, or predictors
[58].

The success of machine learning models depends on feature engi-
neering [58,110]. Feature engineering refers to the process of formulating

the most appropriate features given the data, the model, and the task
[57], which includes feature selection, extraction, transformation, and
reduction. Feature selection is the process of obtaining a subset of fea-
tures from an original feature set [111]. The features must be informa-
tive, discriminating, and independent. Irrelevant and redundant features
should be omitted. Feature extraction refers to the transformation of the
original data to features with strong pattern recognition ability [111].
Feature transformation is the process of converting the original features
into a new set of features using methods such as normalization or
standardization [12]. Feature reduction is the process of reducing the
complexity of a dataset by reducing the feature size or the sample size
while retaining the essential information [12].

6.8. Concepts related to model implementation

During the model implementation, the data is used as an input for an
AI algorithm. For data-based tasks employing machine learning, this
process encompasses understanding how to partition the data (concept
data split), how to model the data structures (concept advanced data
structures) and how to manage versions of the data and model (concepts
data versioning andmodel versioning). For data-based tasks utilizing logic-
and knowledge-based approaches, the process includes manually
handcrafting the data (concepts knowledge elicitation, knowledge inter-
pretation, and knowledge formalization).

AI curricula operate with several data-related concepts in context of
model implementation such as training data [63,69,78,88,91,92],
testing data [62,63,93,94], evaluation data [71,73] and concepts such
data split [71], composition of training data such as its quantity [62].
From the subject perspective, a process of splitting a dataset into
training data and testing data is called data splitt [12,112]. Experts in the
AI field emphasize that the data modality influences the splitting strat-
egy (e.g., it would not be appropriate to randomly split a dataset for
time-series data [112], as then the relationships between data points
would be lost). Training data is used to train the model. Portion of the
training set can be used as validation data to evaluate the model per-
formance during the training [112]. Testing data is used to evaluate a
trained model [12]. An important step in this context is a development
of the effective testing dataset such as through controlling the distri-
bution of data. In the context of transfer learning, the data is differen-
tiated between source and target data [113,114]. The former refers to the
data used for pre-training the model while the latter for fine-tuning the
model [113]. AI curricula mention that working with data also requires
knowledge of advanced data structures [25] such as stacks, queues and
trees [34,115]. Working with other complex data structures such as ar-
rays and lists is common.

AI curricula refer to data-based tasks in context of logic- and
knowledge-based systems, such as reasoning (incl. logical deduction) [6,
8,33,34,63,64,68,76,78,79] and decision-making [68,115]. However, we
did not find any references to data processing during the model imple-
mentation. From the subject perspective, developing a knowledge-based
system requires knowledge elicitation (acquiring and storing informal
descriptions of the knowledge about the specific domain and the
problem-solving process in knowledge-protocols), knowledge interpreta-
tion (representing the knowledge structures in a semi-formal way) [20]
and knowledge formalization (expressing the natural language text in the
formal specification language). Knowledge formalization includes un-
derstanding of components such as a predicate, function, constant, fact
and axiom [16].

6.9. Concepts related to model evaluation

Model evaluation is essential for assessing the accuracy and robust-
ness of a model on testing data. This process involves understanding how
to measure model performance (concepts performance metrics and base-
line), visualize the results (concept performance visualization), and
interpret the outcomes (concepts data fit and explainability).
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In AI curricula, we identified references to evaluating models based
on accuracy [25,62,63,69,73,78,93]. However, accuracy is only one of
many evaluation metrics, and other performance metrics may be more
appropriate depending on the task according to the AI experts. Common
metrics include precision, recall, F1-score, root mean-squared error, purity,
and entropy [19]. AI curricula also discuss whether the data is effectively
represented by the model, described by concepts such as data fit [13],
overfitting and underfitting [43,85]. From the subject perspective, over-
fitting occurs when the model learns noise in addition to true regularities,
whereas underfitting happens when the model fails to learn the true
patterns in the data [116].

If a model performs poorly, improvements can be made by altering
the data or the model itself. Improvements are compared to a baseline
model, which is created with the simplest applicable AI algorithm. This
comparison helps determine the effectiveness of the modifications.
Visualizing the model’s performance and understanding its decisions are
also crucial steps during the model evaluation stage. One method of
explaining the model decisions is feature importance, which identifies the
most influential features in the model’s predictions [117].

6.10. Concepts related to deployment and monitoring

After successful performance evaluation, the model is deployed to
process unseen data (concept real-world data). To ensure accurate per-
formance on unseen data, it is essential to preprocess the data before
input into the model (concepts data-processing pipeline and data pro-
cessing mode). Maintaining the model’s accuracy over time requires
rigorous documentation of model performance (concept error analysis),
ongoing data maintenance, and incorporating human feedback [54,118]
(concept human-in-the-loop).

We did not find references to data processing during the deployment
and monitoring stages in AI curricula. However, from the subject
perspective, it is necessary to preprocess the incoming, real-world data
(e.g., cleaning, transforming) in the same way as preprocessing the
original data used to create an AI model, which requires the establish-
ment of data processing pipelines [56] and deciding between the real-time
or batch mode processing of the data (e.g., once a day) [19]. Because the
world changes, continuous monitoring of model and data performance is
crucial. For instance, if error analysis indicates shifts in input data dis-
tribution leading to performance degradation (data drift), the model
must be updated [13]. The process of maintaining the quality and reli-
ability of data, such as providing infrastructures and data debugging
possibilities, is called data maintenance [12].

6.11. Concepts related to sharing, deleting and archiving data

In the final step, data is either archived, deleted, or shared for further
processing. If the data is archived or shared, documenting all prior steps
of data processing is essential for reusing data in future AI systems [119]
(concept data documentation).

We found some references to data documentation in prior AI frame-
works [6,79]. From the subject perspective, when data is shared or
archived, it must be accompanied by a comprehensive documentation
describing data provenance, characteristics, composition, discovered
issues, preprocessing steps, augmentation, and modeling, among other
aspects [89]. Proper security measures must be implemented to prevent
data leakage when sharing or archiving data. Key concepts at this stage
include data privacy, which involves protecting individuals’ privacy
rights concerning personal data [56] and data security, which entails
safeguarding data from destructive forces and unauthorized actions
through authentication, access control, and encryption [56]. When de-
leting data, it is crucial to ensure permanent removal from all data storage
[120].

7. Discussion

Through our analysis of the literature and AI curricula for K-12, we
identified a collection of data-related concepts essential for the creation
of AI systems within the context of AI education for K-12. Our work
differs from other conceptualizations of the AI field in two major ways:
(1) it focuses on identifying essential concepts related to data as the
fundamental component of AI systems; (2) in addition to analyzing
current AI curricula - as is common in other theoretical reviews of AI
education [61,121,122] - it is based on an in-depth analysis of the
theoretical literature, consultations with domain experts and computer
science teachers. During this process, we identified many data-related
concepts already present in the AI curricula. However, based on the
theoretical work, we see more potential for including the data-related
concepts into K-12 education. Here, we discuss the implications of
what we observed during the process.

AI curricula contain a wide variety of data-based tasks. However,
there is a limited guidance on what the success criteria for fulfilling the
tasks are as well as how the data used to solve the task need to be pre-
pared, constructed, and processed. Despite the importance of data
collection in any AI project, AI curricula address corresponding concepts
in a cursory manner. However, the collection of one’s own data can
serve to illustrate the difficulties inherent in the collection of represen-
tative data and facilitate a deeper understanding of the potential sources
of bias. Prior research suggests that working with one’s own data can
enhance students’ learning of AI [123,124].

A notable discrepancy exists between the theoretical work that un-
derscores the significance of data quality control and the lack of refer-
ences to concepts related to data quality control in AI curricula.
Similarly, there is a discrepancy between the theoretical work that
emphasizes the significance of data cleaning, data pre-processing, data
augmentation and data construction and the lack of references to the
corresponding concepts in AI curricula. Further research is necessary to
elaborate how the concepts related to these processes can be introduced
into AI education, as these are of paramount importance to the func-
tionality and reliability of AI systems and might counteract one of the
common naive conceptions of school students that all data can be used
by AI [125]. Perhaps it is possible to draw upon previous research on
data literacy, where data cleaning and preprocessing is a topic of interest
[1,126].

Data labeling is already a component of AI education. However, we
note that it appears to be insufficiently elaborated, as references to data
labeling strategies and labeling errors are lacking in AI curricula, all of
which are potential sources of data bias. Future research could elaborate
on activities that teach intuition and difficulties in the labeling process.

The use of data to build machine learning models is covered in many
AI curricula. However, because many AI curricula devote less attention
to data cleaning, data pre-processing, and data construction, students
may develop the erroneous belief that raw data is an accurate repre-
sentation of reality, as prior research has shown [125]. Future research
could elaborate on prioritizing the effective development of data before
its use with AI algorithms, taking into account the specifics of data
modalities.

We have observed that AI curricula emphasize the role of data in the
context of tasks that can be solved with machine learning. However,
many modern AI systems use a combination of machine learning
methods and knowledge-based approaches [127]. Therefore, under-
standing how data is manually processed to build knowledge is essential
for the design of AI systems. Although AI curricula refer to data-based
tasks that are solved by means of logic- and knowledge-based systems,
we did not find references to concepts on how to handcraft data when
modeling such systems, which is another potential area for future
research.

We identified a limited number of references to model evaluation.
There is a clear need for future research to elaborate further on how
students can be equipped with the means of evaluating model
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performance and explaining model outcomes. These skills are of critical
importance not only in the context of creating AI systems but also in the
responsible use of such systems.

The deployment, monitoring, sharing, deletion, and archiving of
data is not prominent in AI curricula. However, prior research indicates
that it is possible to deploy AI-based systems in a school context using
tools such as App Inventor [66], suggesting that future research could
elaborate on approaches to integrate essential concepts from moni-
toring, sharing, deleting, and archiving data into AI school education.
This could raise awareness among students that even accurate AI sys-
tems often perform poorly on unseen data, or need to be updated over
time to adapt to changes in the world.

8. Limitations

The results of the research are subject to several limitations. Prior
research indicates that the creation of collections of concepts, as pre-
sented in this paper, is influenced by the individual performing the
procedure. Additionally, there is no established criterion to prove the
completeness of a collection [2]. To address these limitations and ensure
the high validity and representativeness of the collection, we evaluated
the collection with domain experts. Nevertheless, curriculum developers
should be aware that, depending on the data-based task or data mo-
dality, the knowledge of additional data-related concepts is required.
Furthermore, curriculum developers should be aware that the collection
presents the upper limit of what is possible in upper-secondary computer
science school education as it was created additive and in consultation
with computer science teachers. When planning lessons, it is possible to
imagine that the top concepts can be introduced in the lower classes,
with the deeper concepts being introduced in higher grades. For
example, data collection can be introduced in primary school, while data
crawling may be a topic in upper secondary school.

9. Conclusion

The goal of this research was to systematize the AI education field for
K-12 from the perspective of data, the most fundamental component of
AI systems. The resulting collection of data-related concepts provides a
rigorous framework that is of interest to a broad audience. Researchers
and curriculum developers can benefit from this work as the identified
key concepts can serve as a foundation for developing AI curricula that
adequately consider the role of data. Computer science teachers can use
the collection as a reference for terminology when developing data-
focused lesson series on AI. For future work, we are collaborating
closely with school students to evaluate the collection in a data-centered
AI course and anticipate evolving it over time.
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