
Towards Fostering CodeQuality in K-12: Insights from a
Literature Review

Elena Starke
elena.starke@tum.de

Computing Education Research Group
Technical University of Munich

Munich, Germany

Tilman Michaeli
tilman.michaeli@tum.de

Computing Education Research Group
Technical University of Munich

Munich, Germany

ABSTRACT
Code quality is a critical aspect of programming education in K-12,
as it notably affects students’ understanding of code and their ability
to modify code. This poster presents a research project aiming at
fostering code quality in K-12 education. As a first step, we explore
several activities applied in educational contexts, like refactoring,
using a linter, or performing a code review. The findings of this
short review implicate that active participation in these activities
has the potential to foster good programming habits.

CCS CONCEPTS
• Social and professional topics→ K-12 education.

KEYWORDS
code quality, activities, K-12, computing education, refactoring
ACM Reference Format:
Elena Starke and Tilman Michaeli. 2023. Towards Fostering Code Quality
in K-12: Insights from a Literature Review. In The 18th WiPSCE Conference
on Primary and Secondary Computing Education Research (WiPSCE ’23),
September 27–29, 2023, Cambridge, United Kingdom. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3605468.3609782

1 INTRODUCTION
Learning how to program is a major challenge for students in
computing education. As a result, programming novices are often
satisfied when their code fulfills the expected functionality and do
not consider the (code) quality of their work [13]. Code quality is a
multifaceted aspect of software quality that lacks a precise defini-
tion and encompasses various interpretations. In our perspective,
code quality refers to the evaluation of the static characteristics of
a program directly from its source code, which should be given due
consideration after the initial programming phase [15]. Code smells,
serving as indicators of non-functional aspects of code that require
improvement rather than bugs or errors, are often associated with
poor code quality [6]. Regarding K-12, bad code quality is a problem
because it negatively affects students’ ability to understand and
modify code [9] and consequently their capacity to comply with the
required functionality. Except for the knowledge that this problem
exists, there is a lack of research on how we could address this in
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0851-0/23/09.
https://doi.org/10.1145/3605468.3609782

K-12. Therefore, we present a research project that aims to address
code quality in K-12. As a first step, in this poster, we provide an
initial review of the existing literature on activities designed to
foster code quality in educational settings.

2 RELATEDWORK
The existing body of research on code quality in educational set-
tings has predominantly focused on text-based environments at
the university level. In addition, there are suggestions as to what
aspects of code quality are considered relevant in this context [20].
In contrast, studies in K-12 settings have primarily centered around
block-based programming languages. With regard to K-12 students,
despite demonstrating an understanding of code quality concepts
[10], their code frequently exhibits code smells [9]. These problems
often stem from poor programming habits, such as extremely fine-
grained programming or extensive bottom-up programming, often
seen among students working with block-based languages [17].
Additionally, code smells have been identified to have a detrimental
effect on the ability to understand the intricacies of the system and
the capacity to make changes to it [9]. This is consistent with the
finding that code free of code smells is perceived as being more
readable [16] and therefore easier to comprehend, which is an es-
sential prerequisite for “debugging, refactoring, and extending the
functionality” [11]. Furthermore, code quality issues can also be
found in the code produced by university students. Also, in this
context, this is an acknowledged problem [13] which needs explicit
support in the classroom [4]. These results indicate that the high
occurrence and the negative impact of code smells is a challenge
for students, especially regarding bug and error identification.

3 ACTIVITIES TO FOSTER CODE QUALITY
Within professional software development, various activities are
used to enhance code quality. These interventions have also found
their way into educational contexts, where they are adapted and
utilized to help students to improve code quality. Building upon
this premise, our research project is grounded in the hypothesis
that these activities contribute to improving problem-solving skills
and facilitate the acquisition of a deeper understanding of good
programming practices among novice students. In the following,
we present a short literature review on existing findings regarding
activities fostering code quality in educational settings. Therefore,
we have identified research papers that not only propose interven-
tions but also provide a brief evaluation of their implementation in
the classroom setting.

https://doi.org/10.1145/3605468.3609782
https://doi.org/10.1145/3605468.3609782


WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Elena Starke and Tilman Michaeli

3.1 Refactoring
Refactoring is a step-by-step process of improving the internal
structure of code without changing its functionality [6]. Refactoring
activities have been implemented, for example, within specific tools
for educational purposes [14] or explicit course offers [2]. However,
these teaching activities address university students, and there is
currently a lack of equivalent studies specifically tailored for K-12
students. The results show that refactoring poses several challenges
for students. To address these challenges, students can benefit from
applying an approach that involves working in small steps and
with code that is easy to comprehend. By adapting these strategies,
students can reap the benefits of developing valuable problem-
solving and analytical skills [2, 14].

3.2 Linter Usage
Linters are tools used for static code analysis to identify poor pro-
gramming practices and prove valuable in professional software
development for enhancing code quality as well as in educational
settings [1]. For K-12 settings, there are specific linters for Scratch,
such as the LitterBox [7] and Hairball [3]. They are designed to as-
sist students in their programming endeavors. To this end, good and
bad patterns are highlighted, and feedback is given. These patterns
can indicate either a lack of understanding of programming con-
cepts or a beneficial programming structure [7, 18]. Additionally,
these tools aim to improve the feedback process for Scratch projects
by automating certain aspects and providing valuable feedback to
both students and teachers [3]. Considering text-based languages,
the results indicate that resolving issues concerning design and
best practice rules is more time intensive than rules related to code
style and documentation. According to student feedback, the use of
a linter, in general, was rated helpful in their programming process,
with some students even noting an improvement in the readability
of their code [1].

3.3 Code Review
Code Review, a manual inspection of source code to identify bugs
and errors, is an important practice in preventing incorrect behav-
ior and unexpected results [5]. By using checklists, reviewers can
systematically examine code and recognize defects through clever
questioning. Considering the use of such checklists in novice educa-
tional settings, it only leads to a marginal increase in the removal of
defects [19]. Conversely, experienced students demonstrate the abil-
ity to generate appropriate review questions most of the time. Only
in a few cases the questions are unclear, irrelevant, or considered
testing or static analysis [5].

3.4 Further Approaches
Other approaches reported in the literature to improve students’
code quality include providing feedback on the program structure
through control flow graphs [12]. Additionally, a personalized quiz
platform called Foobaz has been developed to provide feedback on
variable names [8].

4 CONCLUSION AND FUTUREWORK
This review provides first insights into several approaches to en-
hancing students’ code quality in educational settings. The findings

implicate that integrating activities to improve code quality may
help students tackle quality issues that hinder bug and error iden-
tification. Furthermore, we hypothesize that active engagement
in code quality improvement activities promotes a deeper under-
standing of good programming practices and supports students in
their learning process. While many of the explored activities in the
literature focus primarily on university students, it is important to
recognize that they can not be mapped directly to K-12 education.
This is because this age group has its own unique requirements
and educational goals. Currently, we are conducting a systematic
literature review on code quality in educational settings to gain
a comprehensive overview of what topics have been explored so
far. Furthermore, we aim to investigate the specific aspects of code
quality that are relevant to K-12 students and to explore effective
strategies for teaching code quality concepts to this particular audi-
ence while also evaluating the effectiveness of these activities with
K-12 students.

REFERENCES
[1] E. Abdullah AlOmar, S. Abdullah AlOmar, and M. Wiem Mkaouer. 2023. On the

Use of Static Analysis to Engage Students with Software Quality Improvement:
An Experience with PMD.

[2] C. Bezerra, H. Damasceno, and J. Teixeira. 2022. Perceptions and Difficulties of
Software Engineering Students in Code Smells Refactoring. In VEM. SBC, Brazil,
41–45.

[3] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and D. Franklin. 2013. Hairball:
Lint-inspired Static Analysis of Scratch Programs. In SIGCSE. ACM, New York,
NY, USA, 215–220.

[4] D. Breuker, J. Derriks, and J. Brunekreef. 2011. Measuring static quality of student
code. In ITiCSE. ACM, New York, NY, USA, 13–17.

[5] C. Chong, P. Thongtanunam, and C. Tantithamthavorn. 2021. Assessing the
Students’ Understanding and their Mistakes in Code Review Checklists: An
Experience Report of 1,791 Code Review Checklist Questions from 394 Students.
In ICSE-SEET. IEEE, Madrid, 20–29.

[6] M. Fowler. 2019. Refactoring: Improving the design of existing code (second edition
ed.). Addison-Wesley, Boston.

[7] G. Fraser, U. Heuer, N. Korber, F. Obermuller, and E. Wasmeier. 2021. LitterBox:
A Linter for Scratch Programs. In ICSE-SEET. IEEE, Madrid, 183–188.

[8] E. Glassman, L. Fischer, J. Scott, and R. Miller. 2015. Foobaz: Variable Name
Feedback for Student Code at Scale. In UIST. ACM, New York, NY, USA, 609–617.

[9] F. Hermans and E. Aivaloglou. 2016. Do code smells hamper novice programming?
A controlled experiment on Scratch programs. In ICPC. IEEE, Austin, Texas, 1–10.

[10] F. Hermans and E. Aivaloglou. 2017. Teaching Software Engineering Principles
to K-12 Students: A MOOC on Scratch. In ICSE-SEET. IEEE, Buenos Aires, 13–22.

[11] C. Izu, C. Schulte, A. Aggarwal, Q. Cutts, R. Duran, M. Gutica, B. Heinemann, E.
Kraemer, V. Lonati, C. Mirolo, and R. Weeda. 2019. Fostering Program Compre-
hension in Novice Programmers - Learning Activities and Learning Trajectories.
In ITiCSE-WGR. ACM, New York, NY, USA, 27–52.

[12] L. Jiang, R. Rewcastle, P. Denny, and E. Tempero. 2020. CompareCFG: Providing
Visual Feedback on Code Quality Using Control Flow Graphs. In ITiCSE. ACM,
New York, NY, USA, 493–499.

[13] H. Keuning, B. Heeren, and J. Jeuring. 2017. Code Quality Issues in Student
Programs. In ITiCSE. ACM, New York, NY, USA, 110–115.

[14] H. Keuning, B. Heeren, and J. Jeuring. 2020. Student Refactoring Behaviour in a
Programming Tutor. In Koli Calling. ACM, New York, NY, USA, 1–10.

[15] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2023. A Systematic Mapping
Study of Code Quality in Education. In ITiCSE. ACM, New York, NY, USA, 5–11.

[16] U. Mannan, I. Ahmed, and A. Sarma. 2018. Towards understanding code read-
ability and its impact on design quality. In NL4SE. ACM, New York, NY, USA,
18–21.

[17] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari. 2011. Habits of programming
in scratch. In ITiCSE. ACM, New York, NY, USA, 168–172.

[18] F. Obermüller, L. Bloch, L. Greifenstein, U. Heuer, and G. Fraser. 2021. Code
Perfumes: Reporting Good Code to Encourage Learners. In WiPSCE. ACM, New
York, NY, USA, 1–10.

[19] G. Rong, J. Li, M. Xie, and T. Zheng. 2012. The Effect of Checklist in Code Review
for Inexperienced Students: An Empirical Study. In CSEE&T. IEEE, Nanjing,
China, 120–124.

[20] M. Stegeman, E. Barendsen, and S. Smetsers. 2016. Designing a rubric for feedback
on code quality in programming courses. In Koli Calling. ACM, New York, NY,
USA, 160–164.


	Abstract
	1 Introduction
	2 Related Work
	3 Activities to Foster Code Quality
	3.1 Refactoring
	3.2 Linter Usage
	3.3 Code Review
	3.4 Further Approaches

	4 Conclusion and Future Work
	References

