
Investigating Code Smells in K-12 Students’
Programming Projects: Impact on

Comprehensibility and Modifiability

Verena Gutmann[0009−0007−2892−9160], Elena Starke[0009−0004−5100−368X], and
Tilman Michaeli[0000−0002−5453−8581]

Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
{verena.gutmann,elena.starke,tilman.michaeli}@tum.com

Abstract. Teaching students to code goes beyond focusing on the cor-
rect implementation of features. It is also about emphasizing the im-
portance of comprehensible and modifiable code. Addressing these char-
acteristics is already crucial for novice programmers in K-12 computing
education, as fostering code quality can support their learning process es-
pecially when working collaboratively in group projects. This study aims
to investigate the extent to which code smells are problematic in K-12
students’ code and understand the impact of different code smells on
comprehensibility and modifiability. We initially selected relevant code
smells to address this research objective and then conducted a qualita-
tive analysis of 12 student projects. The results show a differentiated pic-
ture for different types of code smells. While Duplicated Code and Class
Data Should Be Private may not be critical issues. However, in our data,
Long Functions, Speculative Generality, Comments, Mysterious Names,
and bad Code Formatting negatively affected the comprehensibility and
modifiability.

Keywords: novices · K-12 · computing education · code smells

1 Introduction

Learning to program is one major challenge in the K-12 computing education
classroom. While teaching novices the fundamentals of programming syntax and
implementing desired functionality is essential, it is equally crucial to recognize
the significance of fostering code quality to enhance the learning process, partic-
ularly in group work projects.

Looking into professional software development, besides correct functionality,
it is equally important to consider other quality aspects, such as maintainability,
testability, comprehensibility, or modifiability. These factors are crucial in facil-
itating collaboration among developers and ensuring code’s long-term viability
and maintainability throughout the development process [15].

One key factor that can harm code quality is the presence of code smells [4].
Code smells are not related to functionality or syntax but serve as indicators of
potential issues within the code. They act as warning signs, highlighting areas



2 Gutmann et al.

of code that may require improvement. Comprehensibility and modifiability are
particularly susceptible to the harmful effects of code smells and are consequently
relevant to consider in collaborative work.

Preparing students to become future professional developers is no goal of
K-12 programming education. Nevertheless, it remains crucial to emphasize the
significance of writing comprehensible and modifiable code, particularly in col-
laborative settings. Code smells, which impact comprehensibility and modifiabil-
ity, can challenge effective collaboration among students. Therefore, addressing
code quality and mitigating the presence of code smells can enhance the col-
laborative learning experience in K-12 programming education. Furthermore,
however, it is crucial to enable students to understand how and why a program
works or does not work and to be able to comprehend their code. Additionally,
students often need help to solve issues independently and sometimes even make
it more complicated than it has to be [7].

While existing research has extensively explored code smells in various pro-
gramming contexts, the specific domain of K-12 students’ programming projects
still needs to be explored. Therefore, in this paper, we investigate the impact of
code smells on comprehensibility and modifiability to address them adequately
in the classroom setting.

2 Theoretical background and related work

It is challenging to define comprehensibility in the context of source code due to
its subjective nature. Code comprehensibility is closely related to code readabil-
ity – “a human judgment of how easy a text is to understand” – which can be
considered a prerequisite for comprehension [3]. The aim of comprehensibility
should be to make it as effortless as possible for readers and future editors to
familiarize themselves with the code. A clear structure that includes a meaning-
ful arrangement of instructions and method calls, and uniform code formatting
can be helpful [8]. Additionally, self-explaining variable names, simple control
structures, and good documentation can support code maintenance, resulting in
improved modifiability [3].

In contrast, code smells are recognized patterns in source code that indi-
cate potential areas for improvement rather than bugs or errors. They act as
indicators within object-oriented code, drawing attention to areas of weakness
that could benefit from closer examination and refactoring. By identifying code
smells, developers can proactively address issues and enhance the overall quality
of their code. Various taxonomies have been proposed to classify these smells,
including inappropriate comments, excessively long functions, or an over-reliance
on primitive data types [4]. In addition to code smells, Stegeman et al. propose a
rubric for educational settings to assess code quality and promote effective cod-
ing practices in novice programming courses. Considering aspects relevant for
beginners, this rubric encompasses ten categories grouped into four overarching
categories: Documentation, Presentation, Algorithms, and Structure [19, 20].



Investigating Code Smells in K-12 Students’ Programming Projects 3

Previous research on quality issues in K-12 education has predominantly
focused on block-based programming and tools such as Scratch [6]. In contrast,
text-based programming has mainly been studied in university settings.

Looking into block-based programming, there are various findings regarding
common issues. The source code of Scratch programs created by high school stu-
dents is frequently characterized by multiple code smells, such as problematic
variable names and duplicated code, which can negatively affect both correctness
and readability [5]. Furthermore, students often acquire certain programming
habits that can result in code smells. The prevalence of extensive bottom-up
programming and extremely fine-grained programming approaches can result in
code smells like dead code and an overwhelming number of scripts. Consequently,
students may face significant challenges when debugging and maintaining their
projects, as the complexity and scale make these tasks practically impossible
[14]. Even when the students’ projects were not particularly complex, those code
smells arise [1]. Additionally, code smells such as too-long methods and code du-
plications impacted students’ performance negatively. The long method smell
hindered their understanding, while duplication decreased the modifiability of
their code [9]. Even if comprehensibility and modifiability seem rather abstract,
K-12 students can understand aspects of software quality just as well as general
programming concepts [10]. In addition to examining poor programming habits,
there is a potential approach to address code quality in K-12 classrooms by
emphasizing “code perfumes” that represent good programming practices. Spe-
cific structures like parallelism, nested loops, and nested conditional checks are
identified as beneficial patterns that are often found in functionally correct code
[17].

Considering text-based programming in university settings, evaluating stu-
dent projects led to identifying several quality issues. Using Java, the most com-
mon code smells were missing blank lines and a quirky usage or omission of
parentheses. Considering Python programs, spaces were often omitted after the
comment character or lines contained too many characters [11]. Overall, the cor-
rection rate for quality issues among students is low, with many topics going
unnoticed or unaddressed even when using tools designed to detect them [12].
The comparison of static quality properties between first and second-year college
students revealed that second-year students exhibited improvements in certain
aspects, such as using shorter functions and fewer very short variable names,
compared to their first-year counterparts. However, they also tended to write
more complex code and incorporate a higher level of statement nesting within
methods. Despite these differences, there was no significant improvement in the
overall code quality of second-year students compared to first-year students. This
indicates that code quality skills only improve by explicitly addressing them [2].

In summary, considerable research has been conducted on code quality in
novice programming education, primarily focusing on university-level settings.
Considering K-12, existing research in this domain predominantly centers around
block-based programming languages such as Scratch. As a result, there is a need



4 Gutmann et al.

for further investigation and exploration of code quality aspects, specifically in
text-based programming within K-12 educational contexts.

3 Methodology

To address the research gap described above, we aim to investigate the source
code of upper secondary students in this study. To gain a comprehensive un-
derstanding of the issues posed by code smells in schools, our approach diverges
from a mere examination of their frequency. Rather, we strive to delve deeper,
investigating the extent of the impact caused by these code smells. To this end,
we address the following research question: How do code smells impact the com-
prehensibility and modifiability of source codes of programming novices in upper
secondary school?

3.1 Sample

To answer our research question, we analyzed a total of N = 12 source codes
created by students as part of group work projects towards the end of the school
year. The projects were collected from different German High Schools: four were
created by year 11 students (P1 to P4) and eight by year 10 students (P5 to
P12). At this point, students have one or two years respectively of program-
ming experience in a text-based language. All projects implement small games
programmed in Java using BlueJ, a widely utilized development environment
designed for novices. The source codes from the 11th-grade class represent inter-
mediate versions of their respective projects. However, it is noteworthy that all
projects can be executed without errors. The length of the source code ranges
from 161 to 735 non-empty lines. The mean is 325.5 lines of code, with a median
of 292 lines.

3.2 Data Analysis

We conducted a structured qualitative content analysis according to [13] to an-
alyze the data. We used a deductive category system based on various catalogs
for code smells. However, due to the relatively small and less intricate nature of
projects at this level, it is worth noting that several of the defined code smells
aimed at professional development are not applicable in the school context. Based
on these considerations as well as findings in related work, we have chosen the
following set of code smells from [4]: Long Function, Duplicated Code, Com-
ments, Mysterious Name and Speculative Generality. Furthermore, we included
the code smells Class Data Should Be Private [18] and Code Formatting [20] in
our analysis. Table 1 lists the complete category system.

To detect these code smells, we have established specific thresholds that we
consider meaningful for school projects with limited scope and complexity. A
function, therefore, is a Long Function if it exceeds 20 lines of code. In the case



Investigating Code Smells in K-12 Students’ Programming Projects 5

of Duplicated Code, at least three lines must be duplicated, even if the vari-
able names differ. Regarding Comments, they are flagged as code smells if they
merely describe the code without providing any additional information, in line
with the definition by [4]. However, commented-out lines of code are not consid-
ered code smells. The evaluation of the Mysterious Name code smell is based on
the Oracle Naming Conventions1. However, the distinction between uppercase
and lowercase letters is not taken into account, as it does not significantly im-
pact the code’s comprehensibility or modifiability. Some analyzed projects are
incomplete, so the code smell Speculative Generality refers only to unused at-
tributes, variables, and parameters. Guidance on capturing the code smell Code
Formatting is provided by the criteria for Java from Checkstyle2.

Table 1. Final Category System

name description
Long Function (LF) A method has huge size.
Duplicated Code (DC) A code section is included multiple times.
Comments (C) A comment is superfluous.
Mysterious Name (MN) The name of a variable, class, or method is not

self-explanatory.
Speculative Generality (SG) A part of the code is not called.
Class Data Should Be Private (CDSP) A class exposes its attributes.
Code Formatting (CF) The formatting of the code is not clear.

The detection of code smells was automatically done using the IDE Intel-
liJ3. This involved using the integrated code inspection and analysis, as well
as the Checkstyle4 and Statistic5 plugins. If necessary, manual evaluation was
performed when automated detection was not feasible. For all individual code
smells, we evaluated their actual impact on the modifiability and comprehen-
sibility of the source code individually based on a qualitative interpretation in
the context of the related project. Given the difficulty and subjective nature of
measuring these aspects, in the following, we describe in detail our interpretation
and reasoning resulting from discussions in our research group.

4 Results

To first of all provide an overview of the smells in all projects, see Table 2.
We employed two metrics to measure the number of detected code smells. For
1 https://www.oracle.com/java/technologies/javase/codeconventions-

namingconventions.html
2 https://checkstyle.sourceforge.io/checks.html
3 https://www.jetbrains.com/de-de/idea/
4 https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
5 https://plugins.jetbrains.com/plugin/4509-statistic



6 Gutmann et al.

code smells that tend to increase with code length, we express the frequency as
occurrences per 100 lines (1). For code smells specific to a particular program
element, we present the proportion of code smell occurrences relative to the total
number of program elements of the corresponding type (2) [21].

Table 2. Frequencies of code smells by projects studied. “–” marks that no comments
exist in the code, while 0% means that none of the dedicated program elements is
considered a code smell.

metric P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
LF (1) 18 9 27 23 41 17 11 41 0 24 35 40
DC (1) 0 3 3 2 5 22 3 0 0 8 23 0
C (2) 72% 82% 30% 90% - 100% - 100% 100% - 100% 100%
MN (2) 8% 30% 23% 13% 29% 41% 3% 50% 28% 8% 29% 36%
SG (1) 8 10 5 8 22 5 7 3 8 10 5 0
CDSP (2) 40% 75% 40% 33% 0% 58% 10% 72% 100% 0% 0% 0%
CF (1) 60 54 72 76 40 189 21 11 25 42 47 40

Long Function 22 methods were identified as Long Function. Half are slightly
above the threshold and, therefore, less critical concerning comprehensibility and
modifiability than the others. However, one method in particular (P8) spans
120 lines, accounting for 34% of the total code. This code lacks structure and
clarity, making it prone to complications during modification. Notably, many
very long functions are responsible for updating the user interface. Particularly
conspicuous is such an expansion of functions in the projects of year ten students.
Additionally, constructors (P2, P4, P10, P11) are particularly susceptible to
becoming lengthy. Another factor contributing to long functions is the presence
of if-statements (P11) which have empty branches. Furthermore, extensive if-
statements with multiple cases can also contribute to the length of functions,
but they remain readable due to their structured nature (P7).

Finding: Functions only slightly above the threshold do not pose signifi-
cant limitations on comprehensibility and modifiability. However, in our data,
some other functions lack a clear structure due to their excessive length and
consequently impact comprehensibility and modifiability.

Duplicated Code Overall, a relatively low number of Duplicated Code instances
was detected. The longest duplicate consists of only 11 lines (P11), and many
duplicates are slightly above the threshold (P3, P4, P7, P10), indicating no sig-
nificant issue regarding comprehensibility. The duplicates could be easily refac-
tored in several cases by extracting them into separate functions (P3, P4, P5,
P6, P11) to enhance the code’s comprehensibility and structure. Additionally,
adding parameters could combine some methods (P2, P6). In one outstanding
example, three functions perform the same task but have different names (P6).
Modifying one function requires changing the other two as well. Another critical



Investigating Code Smells in K-12 Students’ Programming Projects 7

instance of duplication arises from identical function calls within an if-statement
under different conditions (P10), with the only difference being the passed ar-
gument (in this case, the color of an object as a String). Changing the method
name would force multiple changes in the condition branches. One Duplicated
Code smell requires advanced knowledge for refactoring. It involves code sections
in four different classes (P6), where the constructors share identical code and
contain another method with the same code. As already mentioned above, one
change would entail several modifications.

Finding: Duplicated Code is relatively scarce overall, and when it is, it only
slightly complicates comprehensibility. Concerning modifiability, only some crit-
ical code smells could mostly be addressed by simple refactoring.

Comments In projects P5 to P11, only a few comments are used. The existing
comments are obviously from code templates that have not been customized
and, therefore, cannot be considered beneficial and thus count as a code smell.
However, it is worth appreciating the inclusion of author information and the
providing short and concise descriptions of classes and functions, which helps in
collaboration (P3). Comments that solely describe the functionality of a method,
such as “closes the database connection” preceding a function named Connec-
tionClose (P1), do not offer significant additional support for comprehension
and are consequently considered as a code smell. In some projects, every line
of code was provided with a comment explaining the corresponding line (P2).
This leads to a rather unattractive and difficult-to-survey picture of the code.
Another issue that could be observed is that Comment code smells were also
apparently created in the comments by copying them, causing incorrect and
useless information (P2). Furthermore, in an if-statement, comments repeating
the conditions were identified (P4). This information is redundant for the reader
and makes it difficult to read.

Finding: Comment usage among students varies greatly. While some stu-
dents refrain from using comments, others use them excessively without adding
much value for comprehensibility.

Mysterious Name This code smell is present in every project. Generally, a mix-
ture of German and English is commonly used, which only somewhat impacts
comprehensibility. However, poor naming can negatively affect comprehensibil-
ity, even though its impact on modifiability is not crucial. Overall, the methods
are mainly named understandably. It should be noted that we have not exten-
sively investigated the functionality of the methods, and therefore may be dis-
crepancies between the naming and the actual functionality. However, method
names niceMethod (P10) and addtt (P2) do not provide any indication of their
functionality. Regarding class names, the only related smells found in the data
are the designations LE and MyKeyAdapter (P2). The variable naming reveals
a contrasting scenario as it often lacks meaningful names. Despite being short,
these names only sometimes convey the variable’s functionality effectively to ob-
servers. Frequent usage of single-letter designations can lead to confusion, mainly



8 Gutmann et al.

when numbering is utilized for differentiation (P1, P2, P3). Numbering is pre-
dominantly done for naming user interface objects (P5, P8, P11, P12) obscuring
the association between specific objects and their corresponding graphical task.
Additionally, certain abbreviations, which should ideally be avoided according
to naming conventions, are frequently employed in numerous projects. Some of
them, such as koord (P3), min (P6), or xpos (P2), can be derived by a reader
and can be considered less critical. In contrast, there are also less comprehensible
namings such as sadpicm, sadpicq (P6), tt (P2), or LHor (P9).

Finding: Most functions and classes have expressive names, enhancing code
comprehensibility. However, variables often need more precise naming, relying
on abbreviations or numbering that hinder code comprehensibility and impair
collaboration. Nevertheless, this does not directly impact modifiability.

Speculative Generality In general, it is worth mentioning that the projects ex-
amined had relatively few unused components. As a result, these unused compo-
nents only have a minor impact on the code comprehensibility and modifiability.
Among these, unused parameters and attributes are the least critical, as they
do not disrupt the overall flow of the program. However, they can introduce
confusion when unused attributes result from the presence of local variables of
the same type within class methods (P2, P6). Likewise, initializing unused local
variables (P3, P6, P9, P10) can hinder comprehensibility. In one project (P10),
an integer variable is declared before a for-loop, seemingly meant to serve as a
constraint for the loop’s iteration. However, the hard-coded value is used within
the loop instead of the variable. This particular example may not be of utmost
importance, but it has the potential to cause some irritation.

Finding: The code smell Speculative Generality is generally a minor issue
that has a limited impact on code comprehensibility and modifiability. Solely,
unused local variables are more likely to affect code comprehensibility negatively.

Class Data Should Be Private Four of the examined source codes do not exhibit
inappropriate data encapsulation. However, in other projects (P1, P6, P8, P9),
more than half of the attributes raised concerns as code smells. Some classes
contain either only public attributes (P8) or do not include any attributes marked
with the private access modifier (P9). In most cases, the attributes lacked an
explicit access modifier, making them accessible to other classes within the same
package. It is important to note that the investigated projects did not utilize
packages, resulting in all classes having access to these attributes. The code
smell Class Data Should Be Private does not directly contribute to poor code
comprehensibility or pose challenges for modifiability.

Finding: The improper usage of access modifiers is typically a minor and
isolated issue that does not significantly impact the comprehensibility or modi-
fiability of the code itself.

Code Formatting Significant instances of poor Code Formatting were detected
in all the analyzed source codes. Remarkably, in one particular project, there
were approximately 189 violations of Checkstyle rules per 100 lines of code. The



Investigating Code Smells in K-12 Students’ Programming Projects 9

most common violations in all projects involve missing spaces around operators,
although these have a relatively minor impact on the overall code comprehensi-
bility. Violations such as missing spaces after a comma or between the method
name and parameter list are also relatively unproblematic. However, instances of
curly braces placed on the wrong line are more significant for maintaining a clear
code structure, frequently occurring in the analyzed source codes. Although con-
sistent misplacement may not severely impact comprehensibility, it can lead to
challenges when making modifications. Similarly, the absence of optional curly
braces, although less frequent, is critical for code modification. Omissions and
misplacement of braces can result in errors when inserting code in the wrong
location, consuming substantial time to identify.

Finding: Cluttered and inconsistent code formatting reduces comprehensi-
bility and poses a risk for future modifications.

5 Discussion

In this study, we qualitatively analyzed students’ source code to investigate how
selected code smells influence the comprehensibility and modifiability of code
written by novice programmers. To this end, we used a selection of typical code
smells from professional software development. Although we have great differ-
ences in the scope and aims of programming projects in K-12, using those pro-
fessional patterns is a typical approach for analyzing students’ projects. In line
with this, our results indicate that certain smells, such as Mysterious Name and
Code Formatting, are severe issues in the students’ code. However, others, such
as Class Data Should Be Private, do not seriously affect the comprehensibility
and modifiability of the high-school students’ projects.

Consequently, we consider addressing the problem of Mysterious Names in
the classroom as highly relevant, mainly when students work collaboratively
in teams. Notably, the prevalence of poorly named variables is not limited to
specific programming languages, as similar problems can be observed in Scratch
projects [16].

Comments can help in keeping an overview, especially when working on a
project over a longer period of time. In addition, in team settings, good com-
ments are crucial for collaboration. Interestingly, our analysis revealed that sev-
eral comments in the code lack meaningful or new information, appearing to be
included solely so that the code contains comments, possibly to comply with
specifications. Following the agile principle using code as documentation, exces-
sive comments could be reduced, thus well-chosen variable and method names,
thereby addressing the Mysterious Name code smell.

We were surprised to find a high occurrence of cluttered Code Formatting in
all the projects because a Checkstyle-plugin for BlueJ is available. BlueJ also
provides automatic formatting features for consistent and clean code. Although
missing blank lines and parentheses were frequently observed in other studies
[11], we found missing parentheses were less common in our results. Instead,



10 Gutmann et al.

missing spaces and the position of curly braces were more prominent issues
affecting code quality.

Concerning the code smell Speculative Generality, we hypothesize that in
many cases, it can be attributed to oversight or carelessness, where elements were
not removed when they became unnecessary. Interestingly, contrary to findings
in Scratch projects [1], the results of this study suggest that unused code may
be considered less problematic.

Our findings regarding the code smell Duplicated Code also differ from pre-
vious results, specifically with studies focusing on frequently occurring code du-
plication in Scratch projects [1, 16]. Several factors, including the age of the
students, the distinction between text-based and block-based languages, and the
presence of an online repository for Scratch projects, could potentially account
for these disparities. However, despite the ease of resolving the detected dupli-
cates and their minimal impact on comprehensibility and modifiability within
our data, addressing the issue of redundant code in school can still be valuable,
particularly in collaborative group projects. Looking at the individual smells, it
becomes apparent that the sense of certain smells, such as Speculative Gener-
ality and Duplicated Code, might be difficult for students to grasp, particularly
in understanding their impact on code modifiability. This difficulty can be at-
tributed to the relatively short and limited scope of school projects, which may
not provide a broad context for students to grasp the significance of modifiability.

We want to emphasize that a high frequency of a code smell does not always
indicate a high impact in our specific context. For example, the occurrence of
Mysterious Names is less frequent than misplaced Comments, but it has a higher
impact on comprehensibility. However, the effect of inappropriate comments may
vary depending on the specific case.

5.1 Limitations

We used a qualitative approach to gain deep insights into selected code smells
and assessed their impact individually. Consequently, our data and results are
not necessarily representative for the target group. Additionally, it is worth not-
ing that assessing the impact on comprehensibility and modifiability is inherently
subjective. Furthermore, we lack direct insight into the programming classes and
have no access to information regarding the guidance teachers provide. There-
fore, we have limited information regarding conventions and evaluation principles
presented to the students, making it challenging to draw conclusions about the
reasons for occurring code smells.

6 Conclusion

In this study, we investigated code quality in novice programmers’ projects,
specifically focusing on how code smells impact code comprehensibility and
modifiability. To this end, we conducted a qualitative content analysis of group
projects of novice programmers. Our results show that several code smells occur



Investigating Code Smells in K-12 Students’ Programming Projects 11

in students’ source code. For example, Mysterious Name and Code Formatting
are regarded as severe issues in the students’ code, especially when working to-
gether on group projects. In our data, other code smells, like Class Data Should
Be Private and Duplicated Code, do not seriously affect comprehensibility and
modifiability.

The findings of this study contribute to our understanding of the impact of
code smells on collaborative programming projects in K-12 computing education
classes. To broaden our subjective view in further research, it could be interesting
to evaluate the students’ perspective on the code quality of their projects and in-
vestigate whether and how code quality depends on the group size. Furthermore,
our results raise questions about how to effectively address them in the classroom
and communicate their importance to K-12 students. One approach might be
to incorporate activities that promote code quality, such as refactoring, using a
linter, or employing an appropriate code-evaluation rubric. By integrating such
activities into teaching, e.g., a specific phase for refactoring within project-based
learning, students can gain hands-on experience in improving code quality that
supports them, particularly in collaborative settings. Additionally, these activ-
ities might provide a valuable opportunity for novice programmers to enhance
their programming competencies as they delve into the code and actively work
towards improving its quality.

References

1. Aivaloglou, E., Hermans, F.: How kids code and how we know: An exploratory
study on the scratch repository. In: Proceedings of the 2016 ACM conference on
international computing education research. pp. 53–61 (2016)

2. Breuker, D.M., Derriks, J., Brunekreef, J.: Measuring static quality of student code.
In: Proceedings of the 16th annual joint conference on Innovation and technology
in computer science education. pp. 13–17 (2011)

3. Buse, R.P., Weimer, W.R.: Learning a metric for code readability. IEEE Transac-
tions on software engineering 36(4), 546–558 (2009)

4. Fowler, M.: Refactoring, Improving the Design of Existing Code. Addison-Wesley,
2 edn. (2019)

5. Frädrich, C., Obermüller, F., Körber, N., Heuer, U., Fraser, G.: Common Bugs in
Scratch Programs. In: Giannakos, M., Sindre, G., Luxton-Reilly, A., Divitini, M.
(eds.) Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education. pp. 89–95. ACM, New York, NY, USA (2020)

6. Fraser, G., Heuer, U., Körber, N., Obermüller, F., Wasmeier, E.: Litterbox: A
linter for scratch programs. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering Education and Training (ICSE-
SEET). pp. 183–188. IEEE (2021)

7. Gugerty, L., Olson, G.: Debugging by skilled and novice programmers. SIGCHI
Bulletin 17(4), 171–174 (apr 1986)

8. Hansen, M., Goldstone, R.L., Lumsdaine, A.: What makes code hard to under-
stand? arXiv preprint arXiv:1304.5257 (2013)

9. Hermans, F., Aivaloglou, E.: Do code smells hamper novice programming? a con-
trolled experiment on scratch programs. In: 2016 IEEE 24th International Confer-
ence on Program Comprehension (ICPC). pp. 1–10. IEEE (2016)



12 Gutmann et al.

10. Hermans, F., Aivaloglou, E.: Teaching software engineering principles to k-12 stu-
dents: a mooc on scratch. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering Education and Training Track (ICSE-
SEET). pp. 13–22. IEEE (2017)

11. Karnalim, O., Chivers, W., et al.: Work-in-progress: Code quality issues of com-
puting undergraduates. In: 2022 IEEE Global Engineering Education Conference
(EDUCON). pp. 1734–1736. IEEE (2022)

12. Keuning, H., Heeren, B., Jeuring, J.: Code quality issues in student programs.
In: Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education. pp. 110–115 (2017)

13. Mayring, P.: Qualitative content analysis: A step-by-step guide. Sage (2022)
14. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Habits of programming in scratch.

In: Proceedings of the 16th ACM conference on Innovation and technology in
computer science education. p. 168–172. Association for Computing Machinery,
New York, NY, USA (2011)

15. Mistrik, I., Soley, R.M., Ali, N., Grundy, J., Tekinerdogan, B.: Software quality as-
surance in large scale and complex software-intensive systems. Morgan Kaufmann
(2016)

16. Moreno, J., Robles, G.: Automatic detection of bad programming habits in scratch:
A preliminary study. In: 2014 IEEE Frontiers in Education Conference (FIE) Pro-
ceedings. pp. 1–4. IEEE (2014)

17. Obermüller, F., Bloch, L., Greifenstein, L., Heuer, U., Fraser, G.: Code Perfumes:
Reporting Good Code to Encourage Learners. In: Berges, M., Mühling, A., Armoni,
M. (eds.) The 16th Workshop in Primary and Secondary Computing Education.
pp. 1–10. ACM, New York, NY, USA (2021)

18. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A.: Do they really
smell bad? a study on developers’ perception of bad code smells. In: 2014 IEEE
International Conference on Software Maintenance and Evolution. pp. 101–110.
IEEE (2014)

19. Stegeman, M., Barendsen, E., Smetsers, S.: Towards an empirically validated model
for assessment of code quality. In: Simon, Kinnunen, P. (eds.) Proceedings of the
14th Koli Calling International Conference on Computing Education Research. pp.
99–108. ACM, New York, NY, USA (2014)

20. Stegeman, M., Barendsen, E., Smetsers, S.: Designing a rubric for feedback on
code quality in programming courses. In: Proceedings of the 16th Koli Calling
International Conference on Computing Education Research. pp. 160–164 (2016)

21. Techapalokul, P., Tilevich, E.: Understanding recurring quality problems and their
impact on code sharing in block-based software. In: 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). pp. 43–51. IEEE
(2017)


