
Agile Methods as a Methodology for Implementing
Collaborative Constructionist Learning in Computer
Science Education and Beyond

Peter Brichzin, Erasmus-Grasser-Gymnasium München, schule@brichzin.de

Petra Kastl, Jack-Steinberger-Gymnasium, kastl.petra@jack-steinberger-gymnasium.de

Ralf Romeike, Freie Universität Berlin, ralf.romeike@fu-berlin.de

Abstract

In start-ups today, almost nothing works without agile software development. In schools, agile methods may be used

to implement constructionist learning by helping the students to collaboratively create meaningful artifacts. This paper

reports on how agile methods can be used as a methodology for conducting school software projects and evaluates, in

the light of Constructionism, how collaborative learning in school projects can be supported.

Introduction

Constructionist learning approaches share the idea that learning “happens especially felicitously in a context where

the learner is consciously engaged in constructing a public entity, whether it’s a sand castle on the beach or a theory

of the universe” (Papert and Harel, 1991). In computer science education, the idea of giving students the opportunity

to create meaningful software artifacts has, over time, paved the way for learning for all. Since software is usually

created in collaborative projects, school software projects are typically organized in a similar way as they are in

professional settings. Traditionally, school projects, similar to professional projects, proceed in sequential phases (Frey,

1983). At the beginning, the task is analyzed. From there, the requirements are deLned, followed by a design phase.

Only then does the implementation take place, which is tested against the requirements at the end. In school projects,

however, sequentially organized projects often turn out to be difLcult, since the students initially usually do not have

the necessary experience and “soft skills”, which are prerequisites for successful project work (Meerbaum-Salant and

Hazzan, 2010). The constructionist learning theory can help us to understand the issues students have with a linear

approach. If constructionist learning involves going through iterative cycles of step-by-step creation and understanding

an artifact, it seems obvious to use an approach for school software in which students develop increasingly complex

prototypes in order to not only create, but also to establish a better understanding of the artifact created, including the

process of doing so.

Agile methods have spread rapidly throughout work environments since the 2000s, functioning as an alternative to

sequential approaches in both small and large companies. Agile teams are often particularly motivated, work in a focused

manner, treat each other with respect, and see mistakes as an important opportunity to grow. They determine their own

path to reach their goal, reMect on it regularly and see change as an opportunity. By doing so, agile thinking and action

change the corporate culture, as they are associated with a series of central values, such as open communication at eye

level and self-responsibility in the team. Thus, teams and customers who have had a taste of agile team work usually

do not want to go back. In agile projects, teams develop prototypes iteratively and incrementally. They test and review

their interim results and regularly obtain feedback. Concrete practices such as user stories, project boards, stand-up

Agile Methods as a Methodology for Implementing Collaborative Constructionist Learning in Computer Science Education and
Beyond | 223



meetings, and team retrospectives support the teams in project organization and execution. These methods can also

enrich teaching (Romeike and Göttel, 2012). Both for teachers and students, agile approaches almost always quickly

produce many positive and motivating effects, because students usually succeed a lot better in organizing themselves,

creating great results in joint responsibility, and achieving pleasing professional and social learning successes (Kastl

and Romeike, 2018). This greatly underlines the social dimension of learning: “What is created and learned in the

construction process is greatly affected by who we build with, and for whom we build” (Holbert, Berland, Kafai, 2021).

However, since “creating communities around creativity and technology is hard, and success is not ensured” (ibid.),

strategies are needed to support students in learning to collaborate in developing an artifact and to organize the process

in a meaningful way. We will provide an overview of the agile process and explain some practices that are recommended

for getting started with agile project work (Brichzin, Kastl, Romeike, 2019) in more detail in the following, since such agile

practices can support constructionist learning (Kastl, Kiesmüller and Romeike, 2016; Meerbaum-Salant and Hazzan,

2010; Monga et al., 2018).

Agile Practices for Structuring and Supporting the Constructionist Learning

Agile practices help teams to act on values that are appreciated in constructionist learning as well. Core agile values

include communication and simplicity, but also transparency, self-organization, and feedback. In addition, focus

(devoting your undivided attention to a speciLc task), courage or commitment (dedicating yourself to your team to fulLll

the mutually set goals) can also be emphasized.

Constructionist Learning in an Iterative Process

Instead of running through the project phases only once in a sequential manner, agile projects process the phases

cyclically in so-called iterations or sprints (cp. Lg. 1) using short, Lxed time windows. The iterations follow one another

directly, are all of the same length, and are each concluded with a functioning, incrementally growing interim result.

Clear communication structures and visualization are also anchored in the process to ensure transparency. The iterative

approach allows learners to grow with the project and gain conLdence in project execution. Experience shows that the

Lrst iteration may be experienced as chaotic by students and teachers alike. However, the structure and practices help

students learn self-organization and collaboration. The Lrst successes are quickly visible, motivate the students and

help them to regularly review the objectives. The teacher can now provide regular feedback and, if desired, integrate

new learning content into the project work Mow step by step to match the product development.

User Stories – Scaffolding Construction

User stories describe software requirements from the customer’s point of view. They consist of a few sentences and

are formulated in everyday language. They help the students to divide the extensive technical functionalities of the

overall system into easily manageable parts and thus give the software development process a clear structure. Even

students with a weaker technical background can contribute to this process. In this way, user stories become the basis

for communication about the sub-goals, teachers can discuss them with the teams and, if necessary, can intervene at an

early stage. User stories support learning in the sense of scaffolded construction.

224 | Agile Methods as a Methodology for Implementing Collaborative Constructionist Learning in Computer Science Education and
Beyond



Fig. 1. A typical agile process adopted for school.

Project Board – Managing Collaboration

The project board (cp. Lg. 1, center) not only visualizes the goals and task packages, but also illustrates the current work

status (and thus the project progress) as well as the work distribution. The visualization provides transparency, supports

self-organization, and illustrates the team’s (and the individual team members’) commitment. It also demands simplicity

in planning and ensures focused work. Along with the prototypes, it is a basis for feedback discussions. Agile project

participants report: “We’re working on fewer things now, but they’ll get done,” and “You always know right away where

you stand and what’s next. You don’t have to have so much on your mind and don’t get bogged down so easily.”

In the simplest case, the project board consists of three columns: “To Dos”, “In Progress” and “Done”. On the left, in

the “To Do” column, the user stories (index cards) hang in descending order of priority, alongside the sub-sequent

tasks determined (sticky notes), in case the user story has already been speciLed. During the work phase, each team

member or pair selects a task, writes his name on it and places it in the middle column titled “In Progress”. After

completing it, it can then be moved to the column at the right titled “Done”. In this way, you can see at a glance who

is currently responsible for which work package and which tasks and user stories have already been completed. The

active reassignment of completed tasks motivates the students, is an occasion to celebrate what has been achieved and

provides the teachers with a basis for assistance.

Agile Methods as a Methodology for Implementing Collaborative Constructionist Learning in Computer Science Education and
Beyond | 225



Stand-Up Meetings – Encouraging Communication

Stand-up meetings help the group to organize itself. Like all other meeting forms, a stand-up meeting relies on

openness, respect, and the courage to address, for example, mistakes or poor work performance, in addition to focus.

It encourages and requires communication, brings the team to a common level of information, and gives the teacher

insight into the teamwork taking place. The daily stand-up meeting is held by the teams at the beginning of each lesson

at school. It replaces the usual in-class recap. Team members take turns answering three questions: “What tasks have

I completed since the last meeting? What tasks do I want to work on next? Were there any problems and with what?”

To ensure that only the essential information is exchanged, the meeting is held standing up and in front of the project

board. Problems are only named and, if necessary, help is requested. Consequently, standup-meetings help regularly

structuring the social dimension of learning.

Pair Programming – Structured Working in Pairs

Structured partner work helps students to organize collaborative work without active-passive division, to support

each other and to exchange knowledge and information about concrete implementations. The practice thus ensures

transparency, immediate feedback, planned and focused action, and simple solutions. Hence, it is a good method to

implement structured partner work in computer science classes. The partners take on deLned roles that are regularly

exchanged. The driver works on the task and informs the navigator about his intentions and his approach. The navigator

checks the processing, considers whether there are alternative, simpler ways of solving the problem, makes sure that

the driver stays with the actual task, and addresses possible misinterpretations. In school, partner work increases self-

conLdence, demands a description of the procedure, initiates discussions about approaches and solution strategies,

prevents mistakes and thus supports the learning process.

Reflection – Understanding Learning Progress Through Review and Retrospective

Even though it is considered an important aspect of teaching and learning processes, reMection often falls by the

wayside due to time constraints. Also, the learning impulses may peter out due to the following project taking place

too late for applying what has been learned. Here, the iterative approach is a clear plus. Regularly pausing after each

work phase to get feedback on the product in a so-called review moves the team forward, but it also has to be learned.

By comparing the goals set with what has been achieved, it promotes self-regulation skills. At the same time, it is an

occasion to celebrate what has been achieved. Possible problems in the work process or in the team can be openly

addressed and tackled in a retrospective. This requires courage, respect, and openness. The recurring opportunity to

practice this supports the development and strengthening of team skills and prevents frustration from building up.

Discussion

Even though computer science education nowadays proLts from the ideas and tools of constructionist learning, the

constructionist roots were often not sufLciently taken into account while developing into a more mature subject.

Instead, methods gained from practice have been applied which do not always serve the pedagogical purpose. With

agile methods, professional practice and constructionist learning Lnd themselves together again. Not only do they

match the iterative character of the constructionist circle of creating an artifact and enhancing the understanding of

226 | Agile Methods as a Methodology for Implementing Collaborative Constructionist Learning in Computer Science Education and
Beyond



the artifact, they match the process of creating such an artifact as well. Furthermore, agile practices can help support

the learning process by structuring, scaffolding, and providing transparency. Experience shows that students who have

gained experience with agile projects in computer science lessons also use their competencies for work and self-

organization in other subjects. Thus, the entire school can beneLt from such collaborative constructionist learning with

agile methods.

References

Brichzin, P., Kastl, P., and Romeike, R. (2019) Agile Schule. Methoden für den Projektunterricht in der Informatik und
darüber hinaus (Agile school. Methods for project-based learning in computer science and beyond). Bern: hep Verlag.

Frey, K. (1983) Die sieben Komponenten der Projektmethode – mit Beispielen aus dem Schulfach Informatik (The seven

components of the project method – with examples from the school subject of computer science). LOG IN, 3(2), 16–20.

Holbert, N., Berland, M., and Kafai, Y. B. (2021) Introduction: ;fty years of constructionism. Designing constructionist

futures, 1-20.

Kastl, P., Kiesmüller, U., and Romeike, R. (2016) Starting out with projects – Experiences with agile software development
in high schools. In ACM International Conference Proceeding Series (Vol. 13-15).

Kastl, P. and Romeike, R. (2018) Agile projects to foster cooperative learning in heterogeneous classes. In IEEE Global

Engineering Education Conference, EDUCON (1182-1191.

Meerbaum-Salant, O. and Hazzan, O. (2010) An Agile Constructionist Mentoring Methodology for Software Projects in the
High School. ACM Transactions on Computing Education, 9(4), 1–29.

Monga, M., Lodi, M., Malchiodi, D., Morpurgo, A., and Spieler, B. (2018) Learning to program in a constructionist way. In

Proceedings of Constructionism 2018. Vilnius, Lithuania.

Romeike, R. and Göttel, T. (2012) Agile Projects in High School Computing Education – Emphasizing a Learners’
Perspective. In Proceedings of the 7th WiPSCE’12 (pp. 48–57). ACM New York, NY, USA.

Papert, S. and Harel I. (1991) Situating Constructionism. Ablex Publishing Corporation.

Agile Methods as a Methodology for Implementing Collaborative Constructionist Learning in Computer Science Education and
Beyond | 227


	FC2023 Proceedings Cover - For digital RGB
	Proceedings-of-Constructionism-FabLearn-2023-1728913657._print
	Contents
	Introduction
	Program Committee
	Full Papers
	Exploring Teacher Assumptions About Making Using MakerPCK
	Can a Home be a Makerspace?
	Learning through “playing with data”
	Design Futures
	Unleashing the power of turtle graphics for graph algorithm visualization
	Creative Movements in Maker-Material Collaborations Maker-Material Entanglements in Collaborative Making
	Virtual reality and the art of empathetic teaching
	Creative STEM activities offered by FabLabs
	Fostering Maker Identity and Collaboration
	Constructionist Measurement
	Supporting lower attaining pupils in early computing education

	Constructionist / Maker futures
	Generative AI as Mathland and Constructionist Frontier Logo traditions, computational fluency, and emerging technology converge to create new opportunities to amplify the potential of each learner
	Programming as a Dialogue with GPT-4 Is this the future of programming?
	Embracing the Challenge
	Algorithms for Designing Learning
	Brazilian Creative Learning Network
	Programming Microworlds for Elementary School Mathematics
	Iterative Data-driven Optimizing Behavior (IDOB)
	Mathematical Constructions in Makerspaces
	Leveraging the powerful ideas of constructionism to enhance emergent design thinking pedagogy

	New Technology Frontiers and Cultural Making
	Musical Manipulatives
	The Emergence of the Samba School as a Learning Society
	Empowering Youth for Climate Action Creative Learning in a University Museum Workshop Series
	Culinary Making

	Short Paper
	Agile Methods as a Methodology for Implementing Collaborative Constructionist Learning in Computer Science Education and Beyond
	Pedagogy Scientists
	Visible learnings
	Balancing hands-on scaffolding and play-based activities for young children’s programming

	Symposia
	Constructionist Approaches to Learning Artificial Intelligence/Machine Learning
	Productive Designs for Successful Failure
	Facilitating Computational Tinkering

	Posters
	A novel generic app for mobile devices that utilizes Augmented Reality (AR) technology to create, share and deliver constructionist multimedia learning scenarios
	Leveraging app making as a constructionist tool for developing Indigenous Hawaiian youth’s rightful presence Integrating geology, geography, and rightful presence
	Scaffolding School-Based Maker Education
	Teachers’ facilitation of maker-centered activities
	Cobogó

	Work-in-progress
	It’s as Easy as 123
	Wireless Embedded Visual Programming for Novices “Unplugging” CS education on embedded platforms
	Writing as Making
	AI-Enhanced Philosophy of Education Studies
	Co-Constructing Language Learning through Tinkering with Wearable Soft Controllers in Galician Creative Libraries for Elementary Schoolers
	Constructionist booster
	Programmable Oven Toaster
	Microworlds, Powerful Ideas, and What do we do Monday?
	Constructionism in the Light of Computational Creativity
	Empowering Learners with a Low-Barrier Mobile Data Science Toolkit Using MIT App Inventor to build data science mobile applications
	Co-Constructing Expert Problem Solvers
	Sock-It-To-Ya
	K-12 Computer Science Ideals in Context Lessons Learned from Co-designing a Constructionist Computer Science Program in the Global South
	Write Your First Song
	CYBATHLON @school scale up inclusion
	“Are you doing anything I can interrupt right now?”
	Conductive Chemistry Learning
	ChatLogo
	Enchanting Woods
	A Constructionist Learning Environment for Accessible Agricultural Robotics in Rural Communities via Making and Remixing
	Constructing Sustainability
	Political Activism in a Youth Community Garden How the making of a community garden supports youth’s political activism in heterogeneous engineering
	Turtle Geometry Today and Yesterday
	Supporting Knowledge Construction in Making via Collective Process-Oriented Documentations Collective Process-Oriented Documentation for Making
	Multivocal Play an Interactive Exhibit
	Kaleidolight
	SPATIAL
	Creative Expression through Color and Sound
	Stories and STEM
	Civic Engagement in the Scratch Online Community as a Case for Civic Imagination in Creative Computing
	Making at School
	Transforming Teaching Science Education
	Cultural Making and Scientific Education
	The Griot Dolls
	ElectricCity
	Making Floats for the Brazilian Carnaval Parade
	Fostering Literacy Development through Constructionist Pedagogy
	Designing a Middle School Curriculum to Critically Explore Socioscientific Issues with Machine Learning
	Act Happy! Act Crazy!
	Constructing various learning activities on the Semantic MediaWiki playground
	Introducing Digital Design Research (DDR)
	Discover BBC micro:bit board as part of a dynamic and experimental AI learning process
	Reconsidering a Picture Rewriting Rule-Based Programming Language for Preschool Children in Japan A Comprehensive Study Using Viscuit



