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ABSTRACT
How should computer-based educational tools represent Machine
Learning (ML) systems for didactic purposes? We address this ques-
tion using constructionist learning theory and the intelligent agent
paradigm of AI. ML in this context is understood as generating and
improving "goal-directed" system behaviors by iteratively maximiz-
ing a "goal function".

We give a theoretical outline of the problem domain along the
questions: How independent can ML concepts be from concepts
of classical computer science (CS)? What are central concepts and
processes that ML possesses? What are important properties of
structural models of this kind of systems conducive to compre-
hension? Finally, we propose some design features of educational
informatics tools for teaching ML and outline further research
needs.

CCS CONCEPTS
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1 INTRODUCTION
In constructionist learning theory [6] new knowledge is build in
an active construction process. It emphasizes the importance of
creative and productive understanding and comprehension as well
as mutual presentation and explanation. This means that learners
and teachers in any domains should be empowered to prepare,
adapt and create interactive learning materials themselves [10]. For
this, appropriate educational tools are needed. These "Educational
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tools for learners should reduce entrance barriers as far as possible
(’low floors’), should not restrict their interests and creativity (’wide
walls’) and at the same time allow the (step-by-step) creation of
complex, sophisticated projects (’high ceilings’)" [11]. They should
also provide instructive insights behind the scenes [8].

This task raises some questions: What design features should ed-
ucational informatics tools for teaching ML have? What are impor-
tant properties of structural models conducive to comprehension?
What are central processes and concepts that ML possesses? How
independent are these from "classical CS" concepts?

In the following we provide a theoretical outline of the problem
domain and related research gaps. For this we will address the
mentioned questions starting with the last one. Finally, we make
some proposals on the first question.

2 THEORETICAL OUTLINE
Even though most ML systems are currently running on (increas-
ingly parallelized) classical digital computing hardware, that doesn’t
mean they are rooted in the CS tradition [12]. For example "Artifi-
cial Neural Networks" follow an alternative information processing
paradigm that is inspired from biological nervous systems [4]. The
universality of von Neumann or Turing hardware, allows to build
and study virtual worlds that follow own principles. Also it is pos-
sible to implement models that come from other sciences such as
philosophy and psychology, even though concepts that are rather
foreign to computer scientists such as "interaction" or "behavior"
may play an important role here.

A very fundamental concept of ML is the idea of iterative op-
timizing behavior [9] by reducing errors or maximizing rewards
[13]. A criticism by cyberneticists in past AI debates was that for-
malist principles of representation and symbol processing are not
central for that and have been improperly transferred to models of
cognitive systems [1]. We want to follow this idea that ML is about
automatically generating and improving useful system behaviors,
like behaviours for detection or prediction tasks (supervised), agent
controls (reinforced) or those that minimize the "generalization
cost" of a model intended to represent a large data set (unsuper-
vised). Bringing the different types of ML systems into one concep-
tual structure by understanding them all as behaviors of systems
interacting more or less usefully with their environment provides
didactic benefits such as supporting sustained understanding.

Among the central processes of classical CS, "problem solving
and problem posing" is found in first place [15]. ML is used for
solving problems, too. But the problem solving process looks funda-
mental different. In [14], some conceptual shifts are pointed out, e.g.
“Implement the solution in a stepwise program.” ("CT 1.0" problem
solving stage 3) to “Train a model from the available data” ("CT
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2.0"). In [12], Langley is cited as having observed that ML is largely
an empirical science, and similar epistemological approaches are
taken here as in physics or chemistry with central processes such
as "observing".

For prototyping complex behaviors in robotics visual data-flow
programming is common used [2]. Similar properties show the
representations of useful tools created in the last years like the
"MemBrain" simulator, "Orange3" or the "google Tensorflow Play-
ground" which allow handling and inspect ML systems without
classical programming knowledge.

3 UNDERSTANDING ML-SYSTEMS BY
CREATING: 5 DESIGN FEATURES

Based on the aforementioned works and considerations, some hy-
potheses on design features of educational tools for ML teaching
are formulated in the following, which also result from a critical
observation of the use of block-based implemented prototypes (lan-
guage "Snap!") on the topic "How do neural networks learn?" 1 by
student teachers in a didactic seminar and two high school students
of grade 12 (1 male and 1 female). In this Snap! based ML systems,
we tried to make functions, such as learning rules and activation
functions, etc., transparent and accessible to the learner. In addition,
we wanted to provide insightful opportunities for modification. But
the block-based representation was not very well suited for that. For
example things that happen independently in parallel, such as pass-
ing signals or modifying weights, are represented sequentially and
contiguously. While functional dependencies conveyed via global
variables remain invisible. Therefore, we propose to investigate the
following design features for educational tools in terms of whether
they are conducive to learning about ML systems:

DF1: “Dataflow perspective": We think of an ML system as a com-
bination (where appropriate nesting,too) of partially parallel and
sequential behaviors of components that ingest and forward data.
“Control flow focuses on allowing operations to ‘fire’ only when
an ‘execution token’ (program counter) arrives at their locations
in the program. Data flow focuses on allowing operations to ‘fire’
when all their input data arrive.”[14].

DF2: "Direct interaction": for the modification of activation func-
tions or learning rules, the students using our program first tried to
interact directly on the Snap! stage with the components (neurons)
of the ML system. This is indicative of a more intuitive design. Such
direct interaction possibilities with the computational nodes and
their connections, combined with an immediate view of and intu-
itive ways to inspect system states and processes, could support
comprehension according to experiential learning [7].

DF3: "Storytelling/contextualization": In our scenario for learn-
ing the Delta Rule, e.g. we used a story that included the topic of
the "ignition point of flammable materials". This seems to have an
activating effect and helped to better understand the application
domains of the related ML approach (’supervised learning’ in this
case).

DF4: "Scaffolding": We could observe, that e.g. the provision of
required blocks simplified the problem for learners significantly.

DF5: "Interdisciplinary combination of models/simulations, rep-
resentations and methods": If methods of different disciplines must
1bit.ly/3bRrwhJ; https://bit.ly/3RjjoXP (in german)

be used, e.g. for the construction of appropriate models and for
checking correctness an instructive, critical, reflective comparison
is possible not only of the kind of the descriptions and predictions,
but also in terms of properties such as effort, reliability or ethical
concerns.

4 DISCUSSION AND FURTHERWORK
Wewill apply the research framework of didactic reconstruction [3]
[5] to structure our further research. It considers the "underlying
perspectives", the "preparation of learning content" and the "design
and implementation" of the desired learning environment. In terms
of clarifying and empirical determination of central concepts and
processes of ML there seems to be a gap in research at present.
To contribute here we will conduct an empirical survey among
CSE and ML experts. Existing educational tools like the mentioned
above have different advantages and disadvantages with regard to
their use for our educational purposes. This field needs to be fur-
ther analysed, a prototype that implements our proposals needs to
developed and evaluated. Furthermore, also with regard to teaching
ML to learners without a CS background, we will elicit meaningful
interdisciplinary application examples that can inspire instructive
subject-specific creations of ML systems.
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