
Developing a Real World Escape Room for
Assessing Preexisting Debugging Experience of

K12 Students
1st Tilman Michaeli

Computing Education Research Group
Freie Universität Berlin

Berlin, Germany
tilman.michaeli@fu-berlin.de

2nd Ralf Romeike
Computing Education Research Group

Freie Universität Berlin
Berlin, Germany

ralf.romeike@fu-berlin.de

Abstract—Debugging code is a central skill in learning to
program. Nevertheless, debugging poses a major hurdle in the
K12 classroom, as students are often rather helpless and rely
on the teacher hurrying from one student-PC to the other.
Despite this, debugging is an underrepresented topic in the
classroom as well as in computer science education research,
as only few studies, materials and concepts discuss the explicit
teaching of debugging. According to the constructivist learning
theory, teaching and developing concepts and materials for the
classroom have to take learners’ preexisting experience into
account. Students’ preexisting debugging experience is built
through troubleshooting, where they frequently find and fix
errors in their daily lives – before they learn to program – for
example when repairing their bicycle or if “the internet” stops
working. Debugging is a special case of general troubleshooting
and shares common characteristics, such as the overall process or
particular strategies. Thus, the aim of this study is to develop an
instrument for assessing preexisting debugging experience in the
form of a real-world escape room consisting of debugging-related
troubleshooting tasks. This allows us to observe students’ trou-
bleshooting process, strategies, and overall behavior in a natural
environment and thus assess preexisting debugging experience.
To this end, a design-based research process was conducted and
a real-world escape room consisting of various troubleshooting
tasks was developed. Those tasks and the escape room setting
provide an innovative methodological approach to study students
troubleshooting behavior and assess their preexisting debugging
experience.

Index Terms—debugging, troubleshooting, escape room, com-
puter science education, K12, computational thinking

I. INTRODUCTION

In programming, systematically examining programs for
bugs, finding and fixing them is a core competence of profes-
sional developers who spend between 20% and 40% of their
working time on debugging code [1]. In the K12 classroom,
however, debugging poses a key problem: For learners, fixing
programming errors is not only a significant obstacle to
learning programming [2], but is additionally a major source
of frustration [3]. Teachers, on the other hand, lack adequate
concepts and materials for fostering and addressing debugging
in the classroom. Most of the time they rush from one
student to another and attempt to support them individually

[4], an approach best described as “putting out the fires”. In
consequence, novices are often left alone with their errors and
forced to learn debugging “the hard way” – similarly to how
many professionals have learned debugging [1].

To eventually develop suitable concepts and materials to
address this problem in the classroom, learners’ preexisting
experience has to be taken into account: According to the
learning theory of constructivism, learning is a constant and
active process of refining preexisting models of a subject by
making and reflecting on new experiences [5]. The importance
of assessing such preexisting experiences is emphasized in
the concept of educational reconstruction [6] as well. While
such preexisting experience for various topics is researched
in computer science education frequently, this does not apply
to debugging. Therefore, the aim of this study is to develop
an instrument to assess preexisting debugging experience of
K12-students.

But what is preexisting experience on debugging? In their
daily lives, students are confronted with errors long before they
build programming experience: Whether there is a problem
with “the internet” or with their bicycle, they are troubleshoot-
ing and locating and fixing errors. Debugging is a special case
of general troubleshooting and shares common characteristics,
such as the overall process or particular strategies [7]. This
is also reflected in the concept of computational thinking,
for which debugging is one such approach [8] and hence
considered important for every student. Therefore, in line
with Simon et al. [9], we consider real-world troubleshooting
experience as preexisting debugging experience that needs to
be incorporated when teaching debugging. To this end, this
paper describes the development of an instrument to assess
such preexisting experiences by adapting an escape room
approach.

The paper is structured as follows: Firstly, the theoretical
background is analyzed, where the link between troubleshoot-
ing and debugging is established. Then, related work regarding
assessing preexisting experience in computer science educa-
tion in general, and debugging in particular, as well as the
usage of escape rooms as a research methodology is discussed.



Building upon this, in section 4 we outline the research
process of developing the escape room and the design criteria.
Afterwards, we present the resulting escape room instrument
and its tasks. In section 6, challenges, and the respective
adaptions to the escape room, are discussed based on the
evaluation. Finally, in section 7 we present our conclusions.

II. THEORETICAL BACKGROUND: PROBLEM SOLVING,
TROUBLESHOOTING AND DEBUGGING

A. Problem Solving and Troubleshooting

Problem solving is defined by Anderson and Crawford
[10] as “any goal-directed sequence of cognitive operations”.
Which skills are required to be a “good” problem solver
depends strongly on the problem, which is characterized by
various factors such as abstractness, structure, or success crite-
ria. Jonassen [7] identifies eleven different classes of problems
according to these criteria, such as algorithmic, logical, or
decision problems. One of the problem classes is the class
of troubleshooting problems:

“Troubleshooting is among the most common forms
of everyday problem solving and in many domains is
synonymous with problem solving, perhaps because
the inoperative entities that involve troubleshooting
are most easily perceived as problems. Mechanics
who troubleshoot your inoperative car or computer
programmers who debug your inoperative computer
are always recognized as problem solvers. The
primary purpose of troubleshooting is fault state
diagnosis. That is, some part or parts of a system
are not functioning properly, resulting in a set of
symptoms that have to be diagnosed and matched
with the user’s knowledge of various fault states.”

Troubleshooting thus refers to the process of locating the
cause of a system malfunction and then repairing or replac-
ing the faulty component [11]. Debugging is troubleshooting
in the domain of programming, a special case of general
troubleshooting [12]. As further examples (and thus other
domains) of troubleshooting problems, Jonassen [7] lists the
identification of chemicals in a sample with a qualitative
analysis, the identification of communication breakdowns in
a committee, or the determination of why newspaper articles
are poorly written. This reveals a holistic understanding of
troubleshooting that goes beyond “technical troubleshooting”
in the domain of engineering.

In the following, the general troubleshooting process and
corresponding strategies are outlined. Building upon this, in
the next section troubleshooting can be compared to debug-
ging. This way, the strong correlation between debugging and
troubleshooting will be introduced, and troubleshooting as pre-
existing debugging experience will be theoretically grounded.

The general troubleshooting process can be summarized as
follows (see [13] or [14] and figure 1). First, the actual problem
has to be specified. To this end, a mental model of the system
and its components must be created and both the incorrect
and the correct behavior of the system has to be identified.

Formulate Problem Description

Generate Causes

Test

Repair and Evaluate

Fig. 1. Troubleshooting process according to Schaafstal et al. [14].

Based on this, hypotheses about possible causes are developed,
which incorporate previous experience (recognition-primed
decision making according to [15]). These hypotheses must
then be tested, and the hypotheses either accepted, rejected,
or refined iteratively. Certain strategies support this process
of generating and verifying hypotheses. Finally, the error is
corrected and tested again to verify whether the correction
is actually successful and/or if there are other errors. For
example, [16] confirms this process in a think-aloud study for
the domain of circuit design.

The general troubleshooting process is supported by apply-
ing strategies. Jonassen and Hung [13] identify two levels of
such strategies:

• Global strategies: Strategies that are independent of the
concrete domain or system and help to limit the problem
space. Examples include Trial-and-Error, topographic
search, binary search, or functional/discrepancy detec-
tion.

• Local strategies: Strategies that are specific to a domain
or system.

There is a large number of studies dealing with trou-
bleshooting in particular domains, such as electronic circuits
[17], [18], production systems [19], [20], or radar systems
[14]. They identify local and global troubleshooting strategies
relevant in the respective domains, and also show that global
strategies vary in significance depending on the domain.

B. Debugging as a Special Case of Troubleshooting

As Debugging is a special case of troubleshooting in the
domain of programming, similar skills are required [21].
This becomes evident when comparing the general trou-
bleshooting and the debugging process: In both debugging and
troubleshooting, the corresponding system (i.e. the program
code) must first be understood, starting from the system’s
malfunctioning (debugging: the program). In the next step, in-
formation and clues must be collected to guide the generation
of hypotheses. Those hypotheses then have to be tested, and
finally, the error (debugging: bug) has to be corrected (see
for example [12], [22]–[24]). Therefore, debugging follows
the same iterative process of repeatedly formulating, verifying,
and refining hypotheses until the cause of the error is found.

The same applies to strategies that support the general
debugging process. Examples of local strategies for debugging
are slicing, print-debugging or test cases. For many of the



local debugging strategies, there are corresponding global
troubleshooting strategies. For example, for the local strategy
of forcing the execution of a particular case and comparing
the actual program output with the expected output, func-
tional/discrepancy detection can be considered the correspond-
ing general global troubleshooting strategy [21]. Similarly,
the strategy of print-debugging for step-by-step tracing of a
program flow can be considered the local counterpart of a
global forward topographic search.

However, on the topic of transferring skills (such as com-
puter science-related approaches and concepts according to
Computational Thinking), results have often been under-
whelming [25]. In contrast, indications for the transfer of
debugging skills beyond the domain of programming have
been shown to exist in a study by Klahr and Carver [26].
They gave students one hour of debugging training as part of
a larger Logo curriculum. It contained a flowchart character-
izing the debugging process, bug mappings, and debugging
“diaries” that were always present in the classroom. Besides
an improvement in students’ code debugging skills, the authors
found improved performance, such as higher accuracy and a
more focused search in the non-computer transfer tasks.

In summary, we see that debugging is a special case
of general troubleshooting. Both the systematic debugging
process and debugging strategies like tracing or testing (local
strategies) are manifestations of the general troubleshooting
process or global troubleshooting strategies like topographic
search or functional/discrepancy detection. Previous research
results indicate that a transfer can actually take place. Given
those similarities, troubleshooting can be seen as preexisting
debugging experience, in particular with regards to the general
process and certain strategies involved.

III. RELATED WORK

A. Measuring Preexisting Skills in CS and Debugging

According to the learning theory of constructivism, learning
is a constant and active process of adapting existing mental
models by making and reflecting on new experiences [27].
Therefore, the already existing experiences of learners must
be taken into account for the development of appropriate
concepts and materials for teaching [5], [28]. Such experiences
– often from real life and pre-teaching – generally include
cognitive, affective, or motivational factors. For the design
of specific teaching-learning settings, concrete domain-specific
preexisting experience (such as preconceptions, prior knowl-
edge, or ideas) is particularly relevant. In computer science
education, there are numerous studies of such domain-specific
preexisting experiences on different topics. In the field of
programming, Onorato and Schvaneveldt [29] and Miller [30]
determined learning preconceptions by observing learners dur-
ing “programming” in natural language. Gibson and O’Kelly
[31] analyzed the students’ problem-solving process for search
problems in a similar way in a classroom setting, while
Kolikant [32] examined their preconceptions concerning par-
allelism and synchronization using written assessment. Similar
to this, in the “commonsense computing” series, preexisting

experience for various topics such as sorting or logic were
investigated by using written assessments as well [33]–[35].

The study conducted by Simon et al. [9] within the com-
monsense computing series is central to this paper. They
investigated preexisting debugging experiences for university
students by analyzing their troubleshooting behavior to con-
clude implications for teaching debugging. To this end, they
asked the participants for their reactions in four real-world
troubleshooting situations, such as giving instructions to repair
a broken light bulb, troubleshooting the popular children’s
game “telephone”, or describing their reactions to further
real-world troubleshooting instances from the participants’
lives. The subjects (university students) answered in written
form. The authors then analyzed those answers for common
characteristics and compared them to the debugging behav-
iors of novices and experts. From the results, they conclude
implications for teaching debugging, such as the need to
“address the differences between locating an error and fixing
it”, emphasizing the importance of test-only, or that undoing a
previous step is unnatural behavior for students. They conclude
that debugging is far less “common sense” than sorting or
concurrency is.

In summary, existing research suggests that preexisting de-
bugging experience, in the form of troubleshooting, influences
debugging behavior. However, written assessment, which is
commonly used within the measurement of preexisting expe-
rience, does not allow for observing the actual troubleshooting
behavior. A survey with open questionnaires cannot record
the students’ reactions when their original plan does not work
out, and enables the participants to plan or revise their final
response comprehensively. Therefore, the relevant character-
istics of their troubleshooting behavior cannot be assessed.
In contrast, escape rooms as a research method provide a
promising approach to study students’ actual troubleshooting
process in a natural environment.

B. Escape Rooms as Research Method

For some years now, so-called (live) escape rooms (or
escape games, exit-the-room games, breakout games, etc.), in
which participants are “locked” into a room and have to escape
from it, have been widely used by commercial providers who
have translated the original idea from a subgenre of digital
point-and-click adventures into reality [36]. A typical escape
room has an overarching story and the participants have to
solve a variety of tasks in a given time. This often includes
unlocking corresponding locks or similar, which in turn lead
to new puzzles and tasks. To win, all puzzles must be solved
in the given time. The players must then either escape from
the room and/or find a certain item.

In recent years, there has been a growing interest in the use
of such escape rooms in various areas of both informal and
formal education. The use of an escape room as a teaching
method offers various exciting educational possibilities, such
as an appealing and motivating context through the application
of elements of gamification [37], [38]. In addition, skills such
as collaboration, critical thinking, and problem solving can be



fostered in a natural way [39]–[41]. The objectives of such
spaces range from teaching general problem-solving or team
coordination skills (e.g. [40], [42]) to teaching content that is
specific to a certain domain or subject area, such as computer
science [41], pharmacy [43], or physics [44].

For many of these escape rooms, which are used as a teach-
ing method, factors such as design criteria, learner motivation,
or the actual learning success have been evaluated. However,
the potential of escape rooms as a method for investigating
problem-solving and learning processes is, in contrast, still
largely unused.

Järveläinen and Paavilainen-Mäntymäki, [45] carried out a
comparative case study in which they analyzed the learning
processes of three student teams in an escape room to convey
an information science research method. They found that the
different teams used different learning processes on their way
through the escape room.

In computer science education, Hacke [41] analyzed behav-
ioral patterns in problem-solving processes. For this purpose,
the author examined the video recordings of 38 groups of
students. For the analysis, he used a deductive category system
to classify behavioral patterns in the problem solving process.
Subsequently, the influence of these patterns on the overall
success in the game was evaluated. The author identified
promising behavioral patterns and group behavior. These in-
clude, for example, the use of a blackboard for taking notes,
a coordinator (instead of a leader) to coordinate the team in
the group composition, or structured task solvers in the team.
Most of these patterns, however, are on a rather abstract level
of “team composition” or deal with team characteristics rather
than being applied more closely to the actual problem solving
process.

In summary, the use of escape rooms as a research method
represents a – so far – hardly used but promising opportunity
to study problem solving processes. It makes it possible to
observe the processes in a “natural” environment. This way,
the analysis of preexisting debugging experience can be taken
one step further than before: Instead of only letting participants
describe how they would react and proceed in a given situation,
the actual problem solving processes and behavior in a real
problem solving situation can be captured.

IV. DEVELOPMENT OF THE ESCAPE ROOM

This study aims to develop an instrument to assess and
analyze students’ preexisting debugging experience. To this
end, students’ behavior in troubleshooting situations has to
be investigated. In contrast to existing approaches that used
real-world examples of troubleshooting situations to determine
preexisting debugging experience, we take this approach a step
further: Instead of asking participants for how they would react
if they were put into a given situation, we actually put them in
that situation by using a real-world escape room setting. Such
an escape room approach offers the following potentials for
the assessment of preexisting debugging experience:

• The actual troubleshooting process and its characteristics
and features can be observed in a “natural environment”.

• In contrast to the survey by open questionnaires or
interviews, it also records the students’ reactions when
their original plan does not work out.

• In addition, the participants are not able to plan or revise
their final response comprehensively, as would be the case
with a written survey.

In designing the escape room as an assessment instrument,
the existing experiences from using escape rooms in education
described above, both as teaching and scientific survey meth-
ods, offer a certain degree of orientation. Nevertheless, any
experience gained in terms of research interest and specific
scientific objectives can only be transferred to a limited extent.
Therefore, a design-based research approach was chosen to
develop the escape room and its tasks.

After the objectives of the room had been clearly defined,
the first step (see [46]) was to determine the overarching story
in which all tasks were to be thematically embedded. The
“office of a professor” was chosen as the setting because of
the organizational conditions (use of rooms at the university)
and because of the variety of possibilities it offers. This story
was linked to “ancient Egypt”: The goal of the participants
is to end the curse of the pharaoh by finding an object
stolen from the excavation site in the office of a professor of
archaeoinformatics involved in excavations in the Valley of the
Kings. In the next step, the individual tasks were developed.
Due to the research project, different criteria for the design of
the individual tasks were developed.

A. Content-related Criteria

First of all, the content-related criteria are of importance.
The investigation aims to observe the troubleshooting process
of students in order to draw conclusions about their preexisting
debugging experience. Thus, criteria regarding troubleshooting
tasks provide guidelines for designing the content. According
to Jonassen and Hung [13] those tasks fulfill the following
criteria:

They

• are not completely defined,
• require that a mental model of the system to be trou-

bleshot is constructed,
• have well-known solutions with clear success criteria,
• require that a judgment be made about the nature of the

problem,
• usually contain only one error, even if this can lead to

several observable errors.

In addition, a clear reference to debugging must be estab-
lished, so that particular troubleshooting skills that correspond
to concrete debugging skills can be applied in solving the task.
Above all, the tasks needs to force students

• to apply a systematic approach according to the general
troubleshooting process and

• to use global strategies to local debugging strategies, such
as functional/discrepancy detection or topographic search



B. Methodological criteria

The application of corresponding behaviors by the partici-
pants must also be observable in order to be able to collect
empirical data. Therefore the behavior must either

• be directly and externally observable so that direct con-
clusions can be drawn about the characteristics and
features of the troubleshooting process, or

• can be made observable through teamwork and open
communication between team members (see e.g. [47])
by actively promoting such communication or making it
necessary.

C. Criteria of escape room setting and practical implementa-
tion

Additional criteria result from the selected setting of the
escape room (instead of, for example, a laboratory situation):

• Comprehensibility: Due to the problem solving charac-
ter of the tasks in an escape room, the comprehensibility
of the tasks is central. It is fundamental to the observation
of a goal-oriented troubleshooting process that students
can grasp the objective of the task in a reasonable time.

• Practicability: Since rooms of the university are used for
the practical implementation, which are only available for
a certain period of time, the tasks must be able to be set up
variably and dismantled within a reasonable time frame.

• Interlinkability: The solution of the individual tasks
must be suitable as “input” for locks, which then release
further tasks. Therefore, the solutions should consist of
numerical combinations or short alphanumeric character
strings.

• Thematic fit: The tasks should be thematically embedded
in the overall story.

• Temporal fit: The complexity of the tasks must be
adapted to the chosen time limit.

According to these criteria, 10 tasks were initially de-
veloped, tested, and refined in several iterations with other
researchers and K12 students. Via a HD surveillance camera
mounted in the room, the participants’ behavior and audio
could be recorded. We used the camera’s two-way audio fea-
ture to record the participants’ communication and to interact
with them to control the game if needed.

The observation and evaluation revealed various challenges
and potential for improvement in the (further) development of
the tasks according to the design-based research methodology,
such as regarding the observability of students’ behavior, link
to debugging, or arrangement and structure of the material.
After the respective refinements, the escape room allowed for
studying the students’ troubleshooting processes, strategies,
and behavior in sufficient detail and, in consequence, drawing
conclusions for the teaching of debugging.

V. RESULTING ESCAPE ROOM TASKS

In the following, the final tasks that are most meaningful
for the research interest will be described. For each task, first
a general description is provided. Then the intended research

goal as well as the expected troubleshooting behavior is stated.
An overview of the tasks and the respective investigation goals
can be found in table I.

1) Screen: The participants find a monitor that does not
seem to work. To “repair” it, all they have to do is con-
nect the power cable next to the monitor to the monitor.
A streaming receiver is also connected to the monitor (and
has a “do-not-touch” label on it) so that after the power is
connected, the monitor displays a timer with the remaining
time and the next task. The goal of this task is to observe
the general troubleshooting process and the application of a
functional/discrepancy detection strategy.

The screen task always posed the first puzzle of the room, as
it provided the students with a timer and necessary information
for the next task upon completion. We expected the students
to:

• notice that the monitor is not working (formulate problem
description).

• hypothesize, based on this observation, that no power
source is connected (generate causes).

• press the power or other buttons, and/or check the inputs
systematically (test).

• search for the respective cable (if not spotted beforehand)
and plug it in, solving the task (repair and evaluate).

2) Tangle of cables: The participants find eight daisy-
chained USB-cables, which connect an LED flashlight to a
power supply. They also find a box permanently mounted in
the room, which they cannot see into without the flashlight.
Two of the cables are broken. The task is to identify the
broken cables and to form a sufficiently long chain with the
remaining cables to be able to shine light into the box and
read the numbers in it. The goal of this task is to observe
the general troubleshooting process and the application of a
functional/discrepancy detection strategy.

Fig. 2. Tangle of cables

• plug in the daisy-chained USB cables, noticing the flash-
light not working (formulate problem description).

• generate multiple hypotheses based on this observation,
such as the power socket, the power adapter, the cables,
or the flashlight itself not working (generate causes).

• systematically check those hypotheses by testing the
respective component (test by using strategies such as
functional/discrepancy detection).



• eventually conclude that some of the cables are not
working, identify those cables and build the daisy-chain
without them, allowing them to shine light into the box
and read the numbers inside (repair and evaluate).

3) Tap the telephone: Participants discover a box with five
cables hanging out. When a cable is plugged into one of the
five plugs, they receive audio feedback as to how many cables
are correctly connected. They must find the correct order of
the cables, similar to the game Mastermind. The goal of this
task is to observe the general troubleshooting process.

Fig. 3. Tap the telephone

For this task, we expected the students to:
• randomly connect cables and sockets (formulate problem

description).
• in doing so, notice a correlation between the audio feed-

back and the connected wires and, therefore, understand
the system (generate causes/test).

• systematically find the correct position for each cable step
by step by checking each of the remaining sockets for a
cable (repair and evaluate).

4) Valley of the Kings: Participants find a map of the Valley
of the Kings with a route on it. They will also find a route
description, although some of the arrows describing the route
are wrong. The paper with the route contains a note that 6
errors can be identified. This activity is designed to analyze
the application of a topographic search strategy.

Fig. 4. Valley of the kings

For the valley-of-the-kings-task, we expected the students
to:

• understand the system of arrow directions and route using
the given example and compare the first few directions
with the route (formulate problem description).

• trace the route, using some form of auxiliary material to
help keep track of the wrong arrows and/or the current
position (apply forward topographic search strategy).

5) Finding Mr. X: A web application (on a previously
found tablet) shows a map of the Cairo subway system. The
participants have the task to find out where Mr. X, whose
starting position is given, is going. To do this, they can place
two “watchers” in the subway tunnels and get feedback on
whether Mr. X has passed them. After a waiting period of 30
seconds, they will receive another chance to place the guards.
This activity was developed to analyze the application of a
topographic search strategy.

Fig. 5. Finding Mr. X

For this task, we expected the students to:
• start from the given entry subway station
• systematically isolate the exit station by placing watchers

that provide as much information as possible regarding
the route of Mr. X, such as at tunnels after transit stations
(apply forward topographic search strategy).

VI. DISCUSSION

The observation and evaluation revealed various challenges
and potential for improvement in the (further) development of
the tasks, which were addressed as follows.

1) What is the solution?: Due to the troubleshooting nature
of the tasks, students were often confronted with finding errors
in a system. A typical hurdle was to recognize whether the
errors (e. g. incorrect numbers) or their correction (e. g. the
correct numbers replacing the incorrect ones) represent the
combination that is needed, for example, to open the next
lock. In order to solve this problem, the errors were uniformly
defined as the solution needed, since the focus in the majority
of tasks was on error localization and not on the correction.
This convention was communicated to the participants at the
beginning of the game, thus reducing the problem.

2) What do I have to do here?: For some of the tasks the
participants had problems understanding the objective of the
task without external advice from the game master. Accord-
ingly, additional hints on the material were added or existing
ones were improved or elaborated. Furthermore, in the first
iterations, many materials for later tasks were already available



TABLE I
OVERVIEW OF THE RESULTING TASKS

Task Research Goal
Screen general troubleshooting process and application of a functional/discrepancy detection strategy
Tangle of cable general troubleshooting process and the application of a functional/discrepancy detection strategy.
Tap the telephone general troubleshooting process
Valley of the kings topographic search strategy
Finding Mr. X topographic search strategy

in the room, in part, because there were no possibilities to lock
them away and to release them later on. This caused confusion
in a lot of groups. In order to prevent students from trying to
establish a connection between materials of different tasks in
a time-consuming and unsuccessful manner, further solutions
to unlock them step-by-step were developed (for example, by
purchasing additional lockable boxes of suitable size).

3) Complexity and Time: In the first iteration, some of the
required materials were hidden somewhere in the room, as it
is common for the escape-room genre [36]. It turned out that
the students had great problems to search and find these items
efficiently. Since the search does not contribute to the goal of
the investigation, hidden objects were completely omitted and
all necessary objects were positioned centrally in the room so
that they could be found directly. It was also noticed that the
student groups rarely worked in parallel when several tasks
were available. Therefore the number and complexity of the
tasks were reduced.

4) Bruteforce: Another striking pattern was that many
groups of students tried to open individual locks by trying
all possible combinations – especially when one or two parts
of the number combination were already known. However, this
behavior, which was not used in the actual tasks but rather to
bypass them, could only be prevented to a limited extent, for
example by using appropriate locks. Other shortcuts, such as
the extraction of materials from locked chests or a diary, were
also tried to be prevented by firmly fixing these materials.

In addition to these factors, which are primarily relevant
for escape-room setting criteria, methodological and content-
related problems were identified as well:

5) Observability of the procedure: For some of the tasks,
the students’ procedure was only observable to a limited
extent, especially because tasks were solved “in the mind”
– or at least attempted to. Therefore, in those cases, the
troubleshooting procedure and its characteristics as well as
applied strategies could not be collected. By providing addi-
tional external aids such as colored stones to mark positions,
the corresponding processes could be made visible. Further-
more, measures were taken to actively promote communication
among the participants in order to make internal processes
visible: For example, a time limit was introduced for one
task until the next attempt was possible, during which the
participants could plan the further procedure.

6) Reference to debugging: In some tasks it also became
apparent that no clear connection could be established between
the (troubleshooting) actions and debugging. Due to the com-
bination of missing or unclear reference to debugging and

problems in observability, some tasks were omitted because
they could not contribute to the research goal.

A. Evaluation and Limitations

Overall, the evaluation of the escape room showed that the
ability to observe students’ behaviors, processes, and strategies
were satisfactory. Within the evaluation, we had groups in
which one student solved a certain task on his own as well
as groups that solved a certain task in such a way that the
procedure could not be observed closely due to the camera
angle. Consequently, these cases need to be left out of the
analysis. Nevertheless, for the vast majority of the tasks and
groups, the actions of the students could be observed and
additional insights could be gained from group discussions
and communication. Furthermore, all groups showed a high
level of motivation due to the scenario. Since the room was
not linear, participants could sometimes work on certain tasks
in parallel. They were thus always able to search the room
for further clues for later problems. This may influence their
tendency to abandon a certain task and concentrate on another
one for the time being (although only a few groups were
observed that split up to work on tasks in parallel).

The instrument developed within several iterations of the
design-based research process can now be used to analyze
students’ troubleshooting behavior. As debugging related be-
haviors like a systematic troubleshooting process or certain
global troubleshooting strategies are necessary and observ-
able within the tasks, preexisting debugging experience that
influences novices’ debugging behavior can be studied and
identified. This allows us to draw conclusions for the teaching
of debugging in the classroom.

VII. CONCLUSION

In summary, we developed an innovative methodological
approach to study students’ troubleshooting behavior. The
main advantage of this instrument in comparison to a written
assessment of participants’ reactions in given situations is
that we can observe the actual troubleshooting process and
strategies in a natural environment, including the reactions
that occur if an initial approach does not work out. The
communication within the groups, which was actively fostered
in the design of the tasks, turned out to make the participants’
processes observable.

Due to the limited existing preliminary work, a design-based
research approach was chosen. This turned out to be suitable
for developing appropriate activities to enable the observation
of troubleshooting behavior.



Furthermore, the tasks developed within the design-based
research process provide a valuable resource for the classroom.
They allow us to point out similarities between troubleshoot-
ing and debugging and fostering certain practices such as a
systematic process and the generation of hypotheses in a non-
programming domain. This way, they might even contribute
to helping students employ corresponding debugging skills in
their daily lives in the sense of computational thinking.

REFERENCES

[1] M. Perscheid, B. Siegmund, M. Taeumel, and R.
Hirschfeld, “Studying the advancement in debugging
practice of professional software developers,” Software
Quality Journal, vol. 25, no. 1, pp. 83–110, 2017, ISSN:
15731367.

[2] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A
study of the difficulties of novice programmers,” Acm
Sigcse Bulletin, vol. 37, no. 3, pp. 14–18, 2005.

[3] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R.
Simmons, “Conditions of learning in novice program-
mers,” Journal of Educational Computing Research,
vol. 2, no. 1, pp. 37–55, 1986.

[4] T. Michaeli and R. Romeike, “Current status and
perspectives of debugging in the k12 classroom: A
qualitative study,” in 2019 IEEE Global Engineering
Education Conference (EDUCON), Dubai, VAE: IEEE,
2019, pp. 1030–1038.

[5] J. Bonar and E. Soloway, “Preprogramming knowledge:
A major source of misconceptions in novice program-
mers,” Human–Computer Interaction, vol. 1, no. 2,
pp. 133–161, 1985.

[6] R. Duit, H. Gropengießer, and U. Kattmann, “Towards
science education research that is relevant for improving
practice: The model of educational reconstruction,” in
Developing standars in research on science education
edition, H. Fischer, Ed., London, UK: Taylor & Francis,
2005, pp. 1–10.

[7] D. H. Jonassen, “Toward a design theory of problem
solving,” Educational technology research and devel-
opment, vol. 48, no. 4, pp. 63–85, 2000.

[8] A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and
J. T. Korb, “Introducing Computational Thinking in
Education Courses,” in Proceedings of the 42Nd ACM
Technical Symposium on Computer Science Education,
ser. SIGCSE ’11, New York, NY, USA: ACM, 2011,
pp. 465–470, ISBN: 978-1-4503-0500-6.

[9] B. Simon, D. Bouvier, T.-Y. Chen, G. Lewandowski, R.
McCartney, and K. Sanders, “Common sense computing
(episode 4): Debugging,” Computer Science Education,
vol. 18, no. 2, pp. 117–133, 2008.

[10] J. R. Anderson and J. Crawford, Cognitive psychology
and its implications. San Francisco, CA, USA: Worth
Publishers, 1980.

[11] N. M. Morris and W. B. Rouse, “Review and evalua-
tion of empirical research in troubleshooting,” Human
factors, vol. 27, no. 5, pp. 503–530, 1985.

[12] I. Katz and J. Anderson, “Debugging: An analysis of
bug-location strategies,” Human-Computer Interaction,
vol. 3, no. 4, pp. 351–399, 1987.

[13] D. H. Jonassen and W. Hung, “Learning to troubleshoot:
A new theory-based design architecture,” Educational
Psychology Review, vol. 18, no. 1, pp. 77–114, 2006.

[14] A. Schaafstal, J. M. Schraagen, and M. Van Berl,
“Cognitive task analysis and innovation of training:
The case of structured troubleshooting,” Human factors,
vol. 42, no. 1, pp. 75–86, 2000.

[15] G. Klein, “Recognition-primed decisions,” Advances in
man-machine system research, vol. 5, pp. 47–92, 1989.

[16] D. Dounas-Frazer, K. Van De Bogart, M. Stetzer, and
H. Lewandowski, “Investigating the role of model-based
reasoning while troubleshooting an electric circuit,”
Physical Review Physics Education Research, vol. 12,
pp. 010137-01 –010137-20, 1 2016.

[17] J. Rasmussen and A. Jensen, “Mental procedures in
real-life tasks: A case study of electronic trouble shoot-
ing,” Ergonomics, vol. 17, no. 3, pp. 293–307, 1974.

[18] N. Reed and P. Johnson, “Analysis of expert reasoning
in hardware diagnosis,” International Journal of Man-
Machine Studies, vol. 38, no. 2, pp. 251–280, 1993.

[19] S. Bereiter and S. Miller, “A field-based study of
troubleshooting in computer-controlled manufacturing
systems,” IEEE transactions on Systems, Man, and
Cybernetics, vol. 19, no. 2, pp. 205–219, 1989.

[20] U. Konradt, “Strategies of failure diagnosis in computer-
controlled manufacturing systems: Empirical analysis
and implications for the design of adaptive decision sup-
port systems,” International journal of human-computer
studies, vol. 43, no. 4, pp. 503–521, 1995.

[21] C. Li, E. Chan, P. Denny, A. Luxton-Reilly, and E. Tem-
pero, “Towards a framework for teaching debugging,” in
Proceedings of the Twenty-First Australasian Comput-
ing Education Conference, New York, NY, USA: ACM,
2019, pp. 79–86.

[22] J. D. Gould, “Some psychological evidence on how peo-
ple debug computer programs,” International Journal of
Man-Machine Studies, vol. 7, no. 2, pp. 151–182, 1975.

[23] D. Spinellis, “Modern debugging: The art of finding
a needle in a haystack,” Communications of the ACM,
vol. 61, no. 11, pp. 124–134, 2018.

[24] B.-d. Yoon and O. Garcia, “Cognitive activities and
support in debugging,” in Proceedings Fourth Annual
Symposium on Human Interaction with Complex Sys-
tems, Dayton, OH, USA: IEEE, 1998, pp. 160–169.

[25] M. Guzdial, “Learner-centered design of computing
education: Research on computing for everyone,” Syn-
thesis Lectures on Human-Centered Informatics, vol. 8,
no. 6, pp. 1–165, 2015.

[26] D. Klahr and S. Carver, “Cognitive objectives in a logo
debugging curriculum: Instruction, learning, and trans-
fer,” Cognitive Psychology, vol. 20, no. 3, pp. 362–404,
1988.



[27] D. C. Phillips, “The good, the bad, and the ugly: The
many faces of constructivism,” Educational researcher,
vol. 24, no. 7, pp. 5–12, 1995.

[28] J. Bransford, A. Brown, and R. Cocking, How people
learn. Washington DC, USA: National Academy Press,
2000.

[29] L. Onorato and R. W. Schvaneveldt, “Programmer-
nonprogrammer differences in specifying procedures
to people and computers,” Journal of Systems and
Software, vol. 7, no. 4, pp. 357–369, 1987.

[30] L. A. Miller, “Natural language programming: Styles,
strategies, and contrasts,” IBM Systems Journal, vol. 20,
no. 2, pp. 184–215, 1981.

[31] P. Gibson and J. O’Kelly, “Software engineering as
a model of understanding for learning and problem
solving,” in Proceedings of the first international work-
shop on Computing education research, New York, NY,
USA: ACM, 2005, pp. 87–97.

[32] Y. B.-D. Kolikant, “Gardeners and cinema tickets: High
school students’ preconceptions of concurrency,” Com-
puter Science Education, vol. 11, no. 3, pp. 221–245,
2001.

[33] B. Simon, T.-Y. Chen, G. Lewandowski, R. McCartney,
and K. Sanders, “Commonsense computing: What stu-
dents know before we teach (episode 1: Sorting),” in
Proceedings of the second international workshop on
Computing education research, New York, NY, USA:
ACM, 2006, pp. 29–40.

[34] G. Lewandowski, D. Bouvier, R. McCartney, K.
Sanders, and B. Simon, “Commonsense computing
(episode 3) concurrency and concert tickets,” in Pro-
ceedings of the third international workshop on Com-
puting education research, New York, NY, USA: ACM,
2007, pp. 133–144.

[35] T. VanDeGrift, D. Bouvier, T.-Y. Chen, G.
Lewandowski, R. McCartney, and B. Simon,
“Commonsense computing (episode 6) logic is
harder than pie,” in Proceedings of the 10th Koli
Calling International Conference on Computing
Education Research, New York, NY, USA: ACM,
2010, pp. 76–85.

[36] S. Nicholson, “Peeking behind the locked door: A
survey of escape room facilities,” Wilfrid Laurier Uni-
versity, Tech. Rep., 2015.

[37] C. Borrego, C. Fernández, I. Blanes, and S. Robles,
“Room escape at class: Escape games activities to facil-
itate the motivation and learning in computer science,”
JOTSE, vol. 7, no. 2, pp. 162–171, 2017.

[38] S. Nicholson, “Creating engaging escape rooms for
the classroom,” Childhood Education, vol. 94, no. 1,
pp. 44–49, 2018.

[39] R. Pan, H. Lo, and C. Neustaedter, “Collabora-
tion, awareness, and communication in real-life escape
rooms,” in Proceedings of the 2017 Conference on
Designing Interactive Systems, ACM, New York, NY,
USA, 2017, pp. 1353–1364.

[40] C. Friedrich, H. Teaford, A. Taubenheim, P. Boland,
and B. Sick, “Escaping the professional silo: An escape
room implemented in an interprofessional education
curriculum,” Journal of interprofessional care, vol. 33,
no. 5, pp. 573–575, 2019.

[41] A. Hacke, “Computer science problem solving in the
escape game “room-x”,” in Informatics in Schools. New
Ideas in School Informatics, S. N. Pozdniakov and V.
Dagienė, Eds., Cham: Springer International Publishing,
2019, pp. 281–292, ISBN: 978-3-030-33759-9.

[42] P. Williams, “Using escape room-like puzzles to teach
undergraduate students effective and efficient group pro-
cess skills,” in 2018 IEEE Integrated STEM Education
Conference (ISEC), Princeton, NJ, USA: IEEE, 2018,
pp. 254–257.

[43] H. Eukel, J. Frenzel, and D. Cernusca, “Educational
gaming for pharmacy students–design and evaluation
of a diabetes-themed escape room,” American journal
of pharmaceutical education, vol. 81, no. 7, p. 6265,
2017.

[44] A. I. V. Vörös and Z. Sárközi, “Physics escape room as
an educational tool,” in AIP Conference Proceedings,
AIP Publishing, vol. 1916, 2017, p. 050 002.

[45] J. Järveläinen and E. Paavilainen-Mäntymäki, “Es-
cape room as game-based learning process: Causation-
effectuation perspective,” in Proceedings of the 52nd
Hawaii International Conference on System Sciences,
Waikoloa Village, HI, USA: ScholarSpace 2019, 2019.

[46] S. Clarke, D. Peel, S. Arnab, L. Morini, H. Keegan,
and O. Wood, “Escaped: A framework for creating
educational escape rooms and interactive games for
higher/further education,” International Journal of Se-
rious Games, vol. 4, no. 3, pp. 73–86, 2017.

[47] D. A. Fields, K. A. Searle, and Y. B. Kafai, “De-
construction kits for learning: Students’ collaborative
debugging of electronic textile designs,” in Proceedings
of the 6th Annual Conference on Creativity and Fabri-
cation in Education, New York, NY, USA: ACM, 2016,
pp. 82–85.


