
Investigating How Novices Use and Collaborate
with a Version Control System for Block-Based

Languages
Stefan Seegerer

Computing Education Research Group
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

stefan.seegerer@fau.de

Tilman Michaeli
Computing Education Research Group

Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

tilman.michaeli@fau.de

Ralf Romeike
Computing Education Research Group

Freie Universität
Berlin, Germany

ralf.romeike@fu-berlin.de

Abstract—Collaboration is an important approach to compu-
tational thinking and considered a desired learning outcome in
various computer science curricula. Collaboration in software
projects is supported by the use of version control systems,
in professional contexts, as well as in education. For novices,
using a professional version control system poses major hurdles.
To support the designing and teaching for and with version
control systems, we conducted a case study with a didactically-
adapted version control system. In a one-day workshop setting,
we investigated how novices use a didactically-adapted version
control system for block-based languages and how they collabo-
rate when working with it. To this end, we applied a structural
qualitative content analysis to screen recordings collected from
the participants. Our results show that novices adapt most of
the concepts of a version control system intuitively and that the
usage of such a system can support their workflow. Nevertheless,
some patterns (such as meaningful commit messages or using
the tool to support tinkering) need to be addressed in teaching.
Regarding collaboration, the results indicate that version control
systems offer different forms of collaboration that might seem
unnatural to students.

Index Terms—Version Control Systems, Collaboration, Com-
puter Science Education, Block-based Programming, High
School, Novices

I. INTRODUCTION

Collaboration is considered as one of the most important
soft skills in the 21st century (e.g. [1], [2]) and poses a core
approach to computational thinking [3]. Working in groups,
especially early on, provides a lot of advantages [4] and
learners can profit from sharing or discussing their actions,
reflecting and building on the work of others [5]. On the
one hand, collaboration can have a beneficial effect on the
process of learning (e.g. [6]), on the other hand, collaboration
skills are also a desired learning outcome in various curricula
(e.g. ACM/CSTA standards for K12 education [7] or the
British Computing curriculum [8]). When working on software
projects, students need to work jointly and collaboratively on
the same resources. This poses challenges such as keeping
documents up to date, distributing or merging changes, or han-
dling conflicts resulting from changes to the same resources
made by more than one person.

In professional software development, version control sys-
tems (VCS) are used to overcome this problem as they
enable teams to work together on the same project by sharing
common resources. In doing so, VCS allow for unique ways of
collaboration. For example, conflict resolution makes it easier
to work on the same resources in parallel. Therefore, work
can be distributed in different ways. Furthermore, working in
branches allows for tinkering in a risk-free environment, where
progress from other members can easily be merged into the
current branch.

However, these collaborative tools are not typically used in
classrooms. On one hand, this is due to their complexity [9]
and the fact that they are not well-suited for popular learning
tools such as block-based languages [10]. On the other hand,
students need to grasp the concepts related to a VCS to
successfully use them for collaboration. To tackle the issue of
complexity, in a previous paper, we presented a didactically-
adapted version control system for the block-based language
Snap! [11]. It was developed based on a review of existing
professional and didactically-adapted version control systems
and their use in computer science (CS) education. However, it
remains unclear which concepts can be understood intuitively,
and which ones must be explicitly addressed in teaching.
Therefore, our aim is to understand how novices use the con-
cepts of a VCS to support the design of didactically-adapted
VCS and their usage in teaching. For the same reasons, we
are interested in how students collaborate when supported by
a version control system. Therefore, in this paper, we report
on findings of a case study with year ten students (aged 15 to
16), who used a didactically-adapted version control system
in an agile project setting.

The paper is structured as follows: Section II outlines the
different kinds of collaboration on documents in computer
science education and reports on experience with version con-
trol systems in the classroom. The didactically-adapted version
control system that is used in the study is presented in section
III. In section IV, we describe the qualitative methodology of
our study. This section is followed by the presentation (section
V) and discussion (section VI) of the results. In section VII,



we present our conclusions.

II. RELATED RESEARCH

A. Collaboration in CS Education

Roschelle and Teasly define “collaboration as the mutual
engagement of participants in a coordinated effort to solve the
problem together” [12]. Collaboration is an important aspect
of working as a computer scientist, especially when working
in software projects. It includes factors such as decomposition
of tasks or communication among each other and promotes
motivation and commitment (e.g. [13]).

Collaboration can be distinguished into synchronous and
asynchronous activities [12]. Both variants can be found in
Computer Science when working together on the same soft-
ware project: on the same files at the same time (synchronous),
and by deliberately splitting work into different tasks, which
are then distributed among the team and need to be put
together afterward (asynchronous).

Typically, collaboration on shared resources in CS is sup-
ported by certain tools. For synchronous collaboration, there
are a lot of tools in education [14], [15]– even for block-
based languages – like Netsblox [16] or Kanto [17], that allow
for real-time remote collaboration, thus enabling distant pair
programming. Synchronous collaboration, especially in the
form of pair programming, has been subject of many studies
(e.g. [18]–[24]). To foster collaboration in software projects
in an asynchronous way, version control is widely adopted in
professional contexts [25] and can also be used in classrooms
[26].

B. Version control systems in the classroom

Version control systems have been adapted for classroom
settings both at school and university level [9], [26]–[30].
Using a VCS provides several use-cases and advantages in
educational settings. These can be divided into pedagogical
and organizational advantages.

Pedagogical advantages include easier collaboration, allow-
ing for regularly merging partial programs – and therefore
helping to identify interface problems at an early stage of
the project –, the possibility to assess individual contribution,
a visual development progress visible for the teacher and
students, and data security in the sense of backups [28]–[31].

Version control systems also provide organizational ad-
vantages, such as the ease of posting assignments, giving
feedback, providing skeletons, reverting changes, and working
remotely. Furthermore, being able to access the code from
everywhere, as well as distribute course materials or handle
homework submissions are frequently mentioned [29], [30].

However, literature reports a series of problems connected
with the use of version control systems. For example, novices
tend to use a non-iterative workflow with long periods without
a commit (i.e. adding changes to the VCS). This poses an
obstacle especially for beginners and diminishes a lot of the
benefits of using a VCS [28]. From a student’s point of view,
conflicts and their resolution are the most complex and difficult

Fig. 1. Browser-based UI for a version control system for block based
languages

tasks [32], especially when the students always work in the
centralized repository rather than in their own branches [29].

Overall, professional version control systems are reported
as being hard to learn (cf. [9], [32]) and the introduction
of a professional version control system is associated with
a large overhead. Students have to develop an understanding
of the concepts of VCS and familiarize themselves with the
respective commands as well as typical procedures. Even for
entry-level professionals or graduate students, this is a complex
(and difficult) task [9].

In summary, we see that both synchronous and asyn-
chronous collaboration activities play a huge role in computer
science. While the first one, especially in the context of pair
programming, has been a common subject of research, there
are only few studies regarding asynchronous collaboration and
the interaction with a version control system in educational
settings.

III. A VERSION CONTROL SYSTEM FOR BLOCK-BASED
LANGUAGES

VCS have been a feature block-based languages were miss-
ing [10]. The didactically-adapted version control system for
block-based languages we presented previously is designed
based on a review of existing professional and didactically-
adapted version control systems and their use in CSE [11].

Our goal was to develop a VCS that is accessible to novices,
but still includes all core concepts of a VCS, which are:

• Project history: Through versioning and awareness in-
formation such as time stamps or commit messages, a
traceable project history becomes accessible.

• Committing: Changes, such as adding new files or altering
existing ones, are added to the project by committing
them to the version control system.

• Branching: Branching opens an alternative path so that
changes can be made in parallel. A branch can be used for
developing new features or fixing bugs, without impacting
the current state of the project.



• Merging: VCS simplify combining changes and resolving
conflicts automatically or – if necessary – manually.

• Data backup: Backing up all files under version control
allows for returning to every (older) version, and, in
consequence, risk-free tinkering.

Our version control system is realized as a web-tool. The
project and its history are visualized in a graph. Changes are
committed back to the VCS from within Snap!. For each editor
of a version, a branch is created automatically. Changes are
merged by selecting the respective nodes in the graph (see
figure 2). Conflicts are resolved automatically when possible
or visualized in a merge view. All old versions can be accessed
via the graph visualization and are opened directly in Snap!.

IV. METHODOLOGY

A. Research Questions

This paper aims to investigate how the didactically-adapted
version control system is used and how it affects collaboration
among novices as this is important to develop suitable tools
and teachings strategies for novices. Therefore, the following
research questions are addressed in our case study:

• (RQ1) How do novices use a didactically-adapted version
control system in a software project? Version control
systems provide concepts such as committing, having
a project history, branching, merging or data back-up.
However, it is reported in literature that the use of a VCS
poses major hurdles for novices. An understanding of
the use of a didactically-adapted version control system
can help tailor tools more to the needs of novices and
indicates what teachers need to address in teaching.

• (RQ2) How do novices collaborate when they work
with a didactically-adapted version control system? VCS
support unique ways of collaboration. However, these
ways might not be obvious to students as they differ from
traditional collaboration in groups, and are therefore not
used. Understanding how novices collaborate intuitively
with a VCS supports teachers in addressing useful col-
laboration patterns, that are not intuitive for novices.

B. Study Setting

The study was conducted during a workshop, where stu-
dents implemented a project with Snap!. We applied an agile
approach according to Romeike and Göttel [33], introducing
practices such as project boards (see figure 3), user stories,
and tasks.

The workshop was conducted with 18 students in a year
ten (ages 15 to 16) class. They had computer science lessons
and were familiar with terms from agile development such
as user-stories or tasks, but had no experience with version
control systems yet. Thus, they can be considered novices in
working with VCS. The students were split into groups of 4
to 5 students with two programming pairs each, leading to a
sample size of 8. Morse [34] recommends a sample size of
about six for similar experiments.

To explore the natural way novices use a VCS, in the
beginning, the students were given only a swift 5-minute

TABLE I
TAGS APPLIED TO INDIVIDUAL EVENTS IN VIDEO RECORDINGS

Category Tag Description

In
te

ra
ct

io
n

w
ith

Sn
ap

!

Tinkering Trying new things without an ex-
plicit goal

Coding Creating a new sprite or script and
trying different strategies to achieve
a goal

Transforming Making changes to an existing sprite
or script

Designing Creating or changing a sprite’s cos-
tumes

Testing Assuring that code functions cor-
rectly

Cleaning Cleaning up the code, rearranging
scripts

Opening Opening a project version in Snap!
Closing Closing a Snap! project

U
sa

ge
of

V
C

S

Exploring Project
History

Accessing project information,
checking for new nodes in the
version control system, or opening
versions for inspection

Committing Committing a new version to ver-
sion control

Branching Creating a branch to work on a
feature or solve a bug

Merging Combining Changes from multiple
nodes and resolve conflicts

Data Backup Using an old version to compare for
errors or returning to an old version

introduction into the agile process in combination with Snap!
and our version control system. As our goal was to identify
which concepts can be understood intuitively, and which ones
must be explicitly addressed in teaching, a short introduction
is ideal to create a foundation for students to use our version
control system in their projects. The workshop instructors
started off by showing the project board (similar to the one
in fig. 3). An exemplary task was then selected. The students
followed along while the workshop instructors branched and
merged two commits. Afterward, they were shown how to
create their own projects in the version control system. Finally,
the students chose their projects from the field of classic video
games.

C. Data Analysis

To answer the research questions we mainly rely on video
recordings, that we collected from each screen. We collected
4 3

4 hours of video per programming pair and 38 hours in
total. In addition, we took the project board status and the
final project structures from the version control system into
account.

For the analysis of the data collected with screen recordings,
we applied a structured content analysis approach according
to Mayring [35]. The actual coding was conducted by two
researchers using the software MaxQDA. To examine the
way the students worked, we categorized all of their actions
into a deductive category system (see table I) to identify
recurring patterns. The category system comprised all possible
interactions with Snap! as well as the core concepts of a



Fig. 2. Merging two versions

Fig. 3. Example Project board within Iteration 2.

version control system. We also noted down additional infor-
mation, such as which sprite was edited or what the commit
message was. This system has been developed collaboratively
up front by both researchers. A similar approach was used by
Rosenbaum [24] when evaluating child behavior in musical
tinkering software. To avoid neglecting important aspects
due to previously-defined categories, inductive additions were
allowed. The recorded videos form the basis of the evaluation,
while a video segment with a minimum length of 5 seconds
serves as a unit of analysis.

In order to allow statements about the usage of the version
control system (RQ1), we analyzed the coded events of the
individual programming pairs. In a second step, we compared
the coded events of all the pairs belonging to a project group
(for an example, see figure 4). By considering the pairs’
progress and comparing the two pairs of one team, statements
could now be made regarding their collaboration (RQ2).

V. RESULTS

All student groups developed a functioning game. Two of
the games were inspired by Asteroids, one was inspired by
Breakout and one by Geometry Dash.

Fig. 4. Excerpt from coding table for two programming pairs of one group.

A. RQ1: How Do Novices Use a didactically-adapted Version
Control System in a Software Project?

Finding 1: A version control system designed for novices
can support students’ workflow.

After the short introduction, the students were able to handle
all the features. Most of the time could be spent on the actual
implementation with Snap! The work within the VCS was
goal-oriented and of short duration. The results show, that the
concept of a version control system can be simplified in a way
that novices use branching and merging.

Finding 2: The graph of the version control system
regularly serves as an orientation for the project progress.

After each commit, the students checked the project history
graph presented in the version control system to study the
groups’ progress. Some students closed their version and
reopened it, while others just returned to their tab, but all
students checked the graph.

Finding 3: Commit messages are not always useful.



While a lot of commit messages reflect which changes
had been done (e.g. ”smoother movement” or ”destroyable
objects”), there were are also a couple of commits labeled
”version 1:18pm” or ”working prototype ZERO”. This expe-
rience matches the literature and our system does not change
it either.

Finding 4: No commit before a longer break.
In between the workshop, there was a one hour break. The

break was announced to the students well in advance and it
was also apparent in the video recordings. However, the groups
did not commit their latest state to the version control system
before that break.

Finding 5: Students include more than one feature per
commit, leading to big commits and a long time between them.

The analysis shows that students did not commit based on
the features implemented: most of the commits contained more
than one new feature or task. In one case, for example, the
student pair was adding Game-Over-messages and a handler
in case the player touches something, even though the com-
mit was about “destroying objects”. However, every feature
committed was functional and can be considered complete.

Finding 6: Students test their code before committing
and after merging.

The students ensured to commit only working versions by
testing their code beforehand. Therefore, no commits that
made only minor fixes or corrections were coded. The same
applies to merging: the students tested the resulting new
version and the interaction of the two components.

Finding 7: Student cleanup behavior differs.
The video recordings show that students not only thoroughly

test their code, but also that some students clean up the
code to increase readability for their peers. They rearrange
sprites, remove blocks they used for testing or trying different
solutions before they commit their work to the version control
system. However, this was not the case for all students. Some
also left block fragments in places next to the actual code or
positioned the scripts somewhere on the screen.

Finding 8: Students check the versions they wanted to
merge. Before completing the merge process, the pair merging
the different versions explored all selected nodes to make sure
they merge the right versions.

Finding 9: Tinkering on VCS level was barely used.
While the students tinkered a lot within Snap!, only one

group used tinkering on a VCS level in the sense of using a
branch to experiment: After experiencing problems with the
framerate, they went back to the earlier version and tried a
new approach.

B. RQ2: How Do Novices Collaborate when They Work with
a didactically-adapted Version Control System?

Finding 10: All pairs actively managed the VCS.
Activities such as merging were registered in all videos

coded. Therefore, there was no clear “project manager” who
was in charge of managing the version control system and
current project status.

Finding 11: Students tend to split work based on sprites.
The codings show that all groups chose a “topographic”

work distribution model, where a sprite was in the focus of
each task. Normally, a task included all activities belonging to
that sprite, e.g. designing the sprites look and implementing
its behavior.

Finding 12: Students avoid conflicts naturally through
their design and division of tasks.

During the whole workshop, the students did not experience
difficult merge conflicts as they designed and distributed the
tasks in a manner that prevented conflicts. Merging mostly
meant combining different sprites or different scripts into
one project file. We coded no manual conflict resolution.
Therefore, all merges were handled by the VCS automatically
without the need for manual picking the scripts to keep.

Finding 13: The students aligned their planning to the
next merge.

Although the workshop was structured using an agile frame-
work, the students did not align their collaboration process to
the given iterations. Thus, they did not only merge at the end
of the iteration but before, as well. Sometimes one pair even
stopped after finishing a feature and waited for the other pair
to finish their task until they could merge – instead of working
on other tasks, e.g. implementing further features for the sprite
they were working on. The version resulting from the merge
was used to plan the further course of action. The students then
continued to work on their own or even worked together on the
same task. For example, one programming pair implemented
the asteroids, the other pair a rocket shooting projectiles. This
was merged before the collision detection between asteroid and
projectiles was implemented together. Only then, the further
procedure was planned and again divided between the two
pairs.

VI. DISCUSSION

This qualitative study aimed to investigate how novices use
a didactically-adapted version control system and how they
collaborate when they work with it.

A. VCS-Usage

In contrast to the experiences with version control systems
outlined in literature, we found novices to use our VCS and
its core features intuitively and without hurdles (see finding
1). The students set their project up by themselves without
requiring instructors’ help and their interaction with the VCS
integrated into the workflow with Snap!. Considering the
problems for novices with VCS reported in the literature, using
a didactically-adapted VCS seems promising.

Nevertheless, when it comes to profound interaction with a
VCS, we also found some patterns – also described in the
literature – in our data that would benefit from additional
instruction.

First of all, the students seem to be unaware of VCS
data backup functionality, as they tend to not commit their
current progress before a longer break (finding 4). Further-
more, tinkering was mainly done in Snap!, without using



the VCS. Products of tinkering that promised little success
were removed in Snap! without ever being committed to the
VCS. Therefore, the branching feature was mainly used for
managing collaboration and not for trying out new ideas.
Although a version control system would facilitate tinkering
as the storage of all developments is guaranteed, this feature
was barely used (finding 9).

However, this behavior could also be attributed to a “holy
master” attitude, where only tested and working code is to be
committed to the whole project – even if only branches are
affected (finding 6, 7 and 8). The rare occurrence of commits
(finding 5) supports both of these aspects – the unawareness
for the backup functionality as well as a “holy master” attitude.
Also the fact that some students left block fragments in places
next to the actual code or positioned scripts somewhere on
the screen (finding 7) is not a contradiction as this is common
among block-based programmers [36].

We also found, once more in accordance with literature, that
commit messages are not always named meaningfully (finding
3). In this particular instance, possible reasons for this behavior
could be the small overall project size resulting from a one-
day workshop as well as the visual graph representation of
the project history, which provides additional guidance. Due
to these factors, there might have been no need for “more”
meaningful commit messages.

As the reported patterns were described in literature
(with “professional” VCS) as well as in our study with a
didactically-adapted VCS, data backup functionality or mean-
ingful commit messages should be addressed. This could
either happen on a tool level or in teaching and instruction.
For example, the “holy master”-phenomenon – a reasonable
attitude – should not prevent students from tinkering, backing
up data, or reverting changes. One possible reaction on a tool
level could be the introduction of an additional, separate graph
representing the releases, which can be selected in the original
graph. This way, we create an area explicitly intended for
tinkering.

B. Collaboration and VCS

We were surprised how much the graph and, thus, the
VCS led the collaboration process. Our results, as well as
unstructured observations from the workshop, showed that the
students tended to align their planning more to the VCS and
the visual representation of the project status in form of the
graph than to the actual project board (finding 2 and 13). Such
a visual representation seems vital for a didactically-adapted
VCS, as it structures and guides the collaboration.

Furthermore, our findings show that the students “natural”
way of collaboration does not incorporate VCS features to
its full extent: students collaborate in a conflict-avoiding way
(finding 11), for example by splitting tasks sprite-wise (finding
12) and merging often, so that possible conflicts are avoided
(finding 13). This might be based on the students existing
daily-life experience with (asynchronous) collaboration. For
example, when creating a slide show, each student typically

works on a different part, as merging their work gets messy
otherwise.

While such an approach helps in a lot of situations, using
a VCS offers additional options and ways for collaboration:
these tools allow for unproblematic merging, therefore tasks
could be split not “topographically” but by functionality or
the skills of the team members. For example, one student
could work on the design of a sprite, while another student
implements its behavior. Instead of waiting for other members
to finish their tasks (see finding 13), students can continue
to work on their tasks and later on include and manage
changes in their branch. Therefore, VCS offers different ways
of planning and collaboration for projects. Webb recommends
to explicitly teach collaboration [37]. Our findings indicate,
that ways of collaboration relevant in the context of VCS
have to be addressed in teaching, as they are not “natural”
for students.

VII. CONCLUSION

In this study, we investigated how novices use a version
control systems in a block-based environment and how they
collaborate when using it. With its focus on asynchronous col-
laboration and block-based languages, it addresses a scenario
that has hardly been explored so far. Although the study was
conducted in a one-day workshop setting and the sample size
is limited, we can draw three major implications for the use
and teaching of version control systems with novices.

First, our results show that novices intuitively use most
concepts of version control systems, making them a suitable
tool for the high school classroom. Despite having good
reasons to use professional VCS even with novices (such as
transferability or a “real” look and feel), many of the problems
described in literature did not occur with our didactically
reduced approach. The integration with the students’ usual
workflow in block-based languages was smooth and despite
the short introduction time, the students were able to work with
the tool and the underlying concepts of a VCS immediately.

Nevertheless, the results also show that while the core
practices are adopted easily, others are not. For example, the
mere use of a didactically reduced version control system does
not foster students to tinker or name commits meaningful.
Therefore, such patterns need to be addressed within the tools
or emphasized in teaching.

Furthermore, our data indicates that the students’ “natural”
approach to collaboration is conflict-avoiding, e.g. by splitting
work sprite-wise and merging as often as possible – even
when this results in waiting. The use of version control
systems offers unique ways of collaboration, which have to
be addressed explicitly in teaching.

In summary, these findings offer deep insights into how
novices use a didactically reduced version control system and
how they collaborate with such a tool. Building upon this,
future research should extend on investigating tool usage over
a longer time period. Our study shows that the proposed VCS
for block-based languages is easily adaptable for novices and
highlights which aspects, especially regarding collaboration,



need to be addressed in teaching. Thus, the findings provide
guidance for designing and teaching version control for and
with novices.

REFERENCES

[1] P. Häkkinen, S. Järvelä, K. Mäkitalo-Siegl, A. Ahonen, P. Näykki, and
T. Valtonen, “Preparing teacher-students for twenty-first-century learning
practices (prep 21): a framework for enhancing collaborative problem-
solving and strategic learning skills,” Teachers and Teaching, vol. 23,
no. 1, pp. 25–41, 2017.

[2] M. M. Lombardi, “Authentic learning for the 21st century: An overview,”
Educause learning initiative, vol. 1, no. 2007, pp. 1–12, 2007.

[3] V. Barr and C. Stephenson, “Bringing computational thinking to k-12:
What is involved and what is the role of the computer science education
community?” ACM Inroads, vol. 2, no. 1, pp. 48–54, Feb. 2011.

[4] J. D. Chase and E. G. Okie, “Combining cooperative learning and
peer instruction in introductory computer science,” in Proceedings of
the Thirty-first SIGCSE Technical Symposium on Computer Science
Education, ser. SIGCSE ’00. New York, NY, USA: ACM, 2000, pp.
372–376.

[5] D. Laurillard, “The pedagogical challenges to collaborative tech-
nologies,” International Journal of Computer-Supported Collaborative
Learning, vol. 4, no. 1, pp. 5–20, 3 2009.

[6] D. Teague and P. Roe, “Collaborative learning: Towards a solution
for novice programmers,” in Proceedings of the Tenth Conference
on Australasian Computing Education - Volume 78, ser. ACE ’08.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc.,
2008, pp. 147–153.

[7] D. Seehorn and L. Clayborn, “Csta k-12 cs standards for all (abstract
only),” in Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education, ser. SIGCSE ’17. New York, NY,
USA: ACM, 2017, pp. 730–730.

[8] Computing at Schools, “Barefoot computing.” 2019,
https://barefootcas.org.uk/.

[9] L. Haaranen and T. Lehtinen, “Teaching git on the side: Version
control system as a course platform,” in Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’15. New York, NY, USA: ACM, 2015, pp.
87–92.

[10] M. Streeter, “Incorporating real world non-coding features into block
ides,” in Proceedings of the 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond), ser. BLOCKS AND BEYOND ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 103–104.

[11] T. Michaeli, S. Seegerer, and R. Romeike, “Enabling Collaboration and
Tinkering: A Version Control System for Block-based Languages,” in
Constructionism 2018: Constructionism, Computational Thinking and
Educational Innovation: conference proceedings, V. D. E. Jasutė, Ed.,
2018, pp. 395–403.

[12] J. Roschelle and S. Teasley, “The construction of shared knowledge
in collaborative problem solving,” in Computer supported collaborative
learning. Berlin, Heidelberg: Springer, 1995, pp. 69–97.

[13] B. K. Nastasi, D. H. Clements, and M. T. Battista, “Social-cognitive
interactions, motivation, and cognitive growth in logo programming and
cai problem-solving environments.” Journal of Educational Psychology,
vol. 82, no. 1, p. 150, 1990.

[14] M. Goldman, G. Little, and R. C. Miller, “Collabode: Collaborative
coding in the browser,” in Proceedings of the 4th International Workshop
on Cooperative and Human Aspects of Software Engineering, ser.
CHASE ’11. New York, NY, USA: ACM, 2011, pp. 65–68.

[15] K. E. Boyer, A. A. Dwight, R. T. Fondren, M. A. Vouk, and J. C. Lester,
“A development environment for distributed synchronous collaborative
programming,” SIGCSE Bull., vol. 40, no. 3, pp. 158–162, Jun. 2008.

[16] B. Broll and A. Ledeczi, “Distributed programming with netsblox is
a snap! (abstract only),” in Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE ’17.
New York, NY, USA: ACM, 2017, pp. 640–640.

[17] Y. Ohshima, B. Freudenberg, and D. Amelang, “Kanto: A multi-
participant screen-sharing system for etoys, snap!, and gp,” in Proceed-
ings of the 3rd ACM SIGPLAN International Workshop on Programming
Experience, ser. PX/17.2. New York, NY, USA: ACM, 2017, pp. 7–10.

[18] G. Braught, T. Wahls, and L. M. Eby, “The case for pair programming
in the computer science classroom,” ACM Transactions on Computing
Education (TOCE), vol. 11, no. 1, p. 2, 2011.

[19] L. Werner and J. Denning, “Pair programming in middle school,”
Journal of Research on Technology in Education, vol. 42, no. 1, pp.
29–49, 2009.

[20] E. Mendes, L. B. Al-Fakhri, and A. Luxton-Reilly, “Investigating pair-
programming in a 2nd-year software development and design computer
science course,” SIGCSE Bull., vol. 37, no. 3, pp. 296–300, Jun. 2005.

[21] O. Ruvalcaba, L. Werner, and J. Denner, “Observations of pair pro-
gramming: Variations in collaboration across demographic groups,” in
Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, ser. SIGCSE ’16. New York, NY, USA: ACM,
2016, pp. 90–95.

[22] L. Murphy, S. Fitzgerald, B. Hanks, and R. McCauley, “Pair debugging:
A transactive discourse analysis,” in Proceedings of the Sixth Inter-
national Workshop on Computing Education Research, ser. ICER ’10.
New York, NY, USA: ACM, 2010, pp. 51–58.

[23] M. Israel, Q. M. Wherfel, S. Shehab, E. A. Ramos, A. Metzger,
and G. C. Reese, “Assessing collaborative computing: development of
the collaborative-computing observation instrument (c-coi),” Computer
Science Education, vol. 26, no. 2-3, pp. 208–233, 2016.

[24] E. Rosenbaum, “Explorations in musical tinkering,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2015.

[25] J. Portillo-Rodriguez, A. Vizcaino, M. Piattini, and S. Beecham, “Tools
used in global software engineering: A systematic mapping review,”
Information and Software Technology, vol. 54, no. 7, pp. 663 – 685,
2012.

[26] D. M. Case, N. W. Eloe, and J. L. Leopold, “Scaffolding version
control into the computer science curriculum,” in Proceedings of the
2016 International Workshop on Distance Education Technology (in
conjunction with the 22nd International Conference on Distributed
Multimedia Systems (DMS16)). Salerno, Italy: Knowledge Systems
Institute Graduate School, 2016, pp. 175–183.

[27] K. Fisker, D. McCall, M. Kölling, and B. Quig, “Group work support
for the bluej ide,” SIGCSE Bull., vol. 40, no. 3, pp. 163–168, Jun. 2008.

[28] L. Glassy, “Using version control to observe student software develop-
ment processes,” J. Comput. Sci. Coll., vol. 21, no. 3, pp. 99–106, Feb.
2006.

[29] J. Lawrance, S. Jung, and C. Wiseman, “Git on the cloud in the
classroom,” in Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’13. New York, NY, USA:
ACM, 2013, pp. 639–644.

[30] P. Brichzin and T. Rau, “Repositories zur Unterstützung von kollabora-
tiven Arbeiten in Softwareprojekt (repositories to support collaborative
work in software projects),” in Lecture Notes in Informatics (LNI):
INFOS 2015 - Informatik allgemeinbildend begreifen. Bonn, Germany:
Gesellschaft für Informatik, 2015, pp. 73–82.

[31] K. L. Reid and G. V. Wilson, “Learning by doing: Introducing version
control as a way to manage student assignments,” SIGCSE Bull., vol. 37,
no. 1, pp. 272–276, Feb. 2005.

[32] V. Isomöttönen and M. Cochez, “Challenges and confusions in learning
version control with git,” in Information and Communication Technolo-
gies in Education, Research, and Industrial Applications, V. Ermolayev,
H. C. Mayr, M. Nikitchenko, A. Spivakovsky, and G. Zholtkevych, Eds.
Cham: Springer International Publishing, 2014, pp. 178–193.

[33] R. Romeike and T. Göttel, “Agile projects in high school computing
education: Emphasizing a learners’ perspective,” in Proceedings of the
7th Workshop in Primary and Secondary Computing Education, ser.
WiPSCE ’12. New York, NY, USA: ACM, 2012, pp. 48–57.

[34] J. M. Morse, “Designing funded qualitative research,” in Handbook of
qualitative research, Denzin and Y. S. Lincoln, Eds. Thousand Oaks,
CA: Sage Publications, Inc, 1994, pp. 220–235.

[35] P. Mayring, “Qualitative content analysis,” A companion to qualitative
research, vol. 1, pp. 159–176, 2004.

[36] S. Jatzlau, S. Seegerer, and R. Romeike, “The Five Million Piece Puzzle:
Finding Answers in 500,000 Snap!-Projects.” in 2019 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). IEEE, 2019.

[37] N. M. Webb, “Group collaboration in assessment: Multiple objectives,
processes, and outcomes,” Educational Evaluation and Policy Analysis,
vol. 17, no. 2, pp. 239–261, 1995.


