
header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 1

Fundamental Concepts of 3D Turtle Geometry
Manuel Riel, manuel.riel@fu-berlin.de
Didactics of Computer Science, University of Potsdam, Germany

Ralf Romeike, ralf.romeike@fu-berlin.de
Computing Education Research Group, Free University Berlin, Germany

Abstract
Seymour Papert’s turtle in Logo has launched a revolution in programming enabling students,
even at a young age, to create their own art using elementary geometry. Recent developments
allow for creating turtle art in 3D: Visual, block-based programming environments, such as Beetle
Blocks, in explicit tradition of Papert's turtle graphics, help students to design their own 3D models
and convert them from the virtual to the physical world using 3D printing technology. However,
reported experiences from previous teaching attempts involving 3D turtle geometry faced a signif-
icant challenge: in order to “draw” such beautiful three-dimensional objects, complicated advanced
mathematical methods seemed inevitable, even for creating basic figures. This encouraged us to
explore in detail, how artistic figures can be created in 3D using intuitive geometric knowledge
suitable for novice programmers. Therefore, as a first step to understand what makes creating 3D
turtle art complicated, we identify the underlying conceptual difference between the two-dimen-
sional and three-dimensional space for turtle geometry: the existence of two entirely different co-
ordinate systems. Building on this, we discuss in depth, how traditional turtle geometry can be
applied for creating 3D objects, and explain a universal approach to creating a wide range of
shapes in 3D turtle geometry. Subsequently, we present our experiences from the classroom
gained in our teaching series based on the discussed concepts. In conclusion, when taught in an
intuitive way, 3D turtle geometry offers another motivating setting for fostering creativity.

 Figure 1. Classic 2D turtle art transformed from 2D to 3D and printed out as physical object.
[contains image from turtleart.org1]

Keywords
3D printing, 3D model, computing education, programming introduction, Beetle Blocks, turtle art

1 https://turtleart.org/gallery/imagepage.html?50

https://turtleart.org/gallery/imagepage.html?50

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 2

1. Introduction
Within the last years, fab labs and makerspaces have shown that modern fabrication processes,
which reach from 3D modeling objects in CAD environments to manufacturing them using additive
or subtractive technologies, motivate individuals to create small items for personal use. An aspect
of this fascinating maker culture can be brought to the classroom in CS education when using 3D
printers to build previously self-designed 3D models.
However, professional CAD environments used in fab labs are quite hard to understand for stu-
dents. Instead, this technique can be applied in the classroom with one of the following ap-
proaches:
1) An older, more “traditional” way which utilizes easy-to-use CAD environments, e.g. TinkerCAD
(Buehler et al., 2014) or Google SketchUp (Lutz, 2013). Students use pre-defined 2D and 3D
shapes, such as circles, cubes, and spheres, to create new objects by combining the given
shapes.
2) Constructionist driven programming environments which directly follow the ideas of Logo – but
add the third dimension: In Beetle Blocks, a beetle – like Logo’s turtle – is controlled by students
with simple programming commands. On instruction, it extrudes shapes along the travelled path,
hence creating Turtle Art in 3D (Romagosa et al., 2016).
Most educators around the world prefer the latter approach, because it inherently supports the
constructionist geometric idea for novice programmers. Furthermore, it seems more intuitive than
the usual abstract (de-)composition of objects in conventional CAD environments.
Offering great potential for constructionist approaches, 3D printing technology allows students to
convert their 3D models, which have been created in environments like Beetle Blocks, from the
virtual to the physical world. However, in the light of experiences with existing teaching attempts
for 3D printing in CS education, described by Kastl et al. (2017), one major challenge becomes
apparent: Even in higher school classes students faced difficulties due to complicated mathemat-
ical methods used for creating even simple figures.
Encouraged by these reports, in this paper we explore in depth, how the intuitive concepts of
traditional turtle geometry can be brought to 3D. Therefore, the paper is structured as follows: In
section 2 we analyze the underlying conceptual difference between the two-dimensional and
three-dimensional space for turtle geometry, which causes the challenge mentioned above: The
existence of two different, three-dimensional coordinate systems with two different reference
points. We explain further, how this affects the process of constructing 3D objects. Building on
this, we discuss in section 3, which concepts of traditional turtle geometry are already appropriate
for creating 3D objects or how strategies can be adapted in 3D – always considering novice pro-
grammers keeping the mathematical background intuitive. Additionally, we present an easily ac-
cessible approach, which supports creating 3D turtle geometry and can be used in a wide range
of projects. Based on the concepts discussed, we designed a teaching series for novice program-
mers and share our experiences from the classroom presenting students’ final projects in section
4: Supported by fundamental concepts in 3D turtle geometry students can create their own 3D
objects.

2. Conceptual Differences in 2D vs. 3D Turtle Geometry
Before we can discuss fundamental concepts of turtle art in 3D, further investigation of the geo-
metrical situation in 3D is needed, which differs more from 2D than expected: Not only a third axis

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 3

is added to the 2D coordinate system, but also two different three-dimensional coordinate systems
become apparent (see fig. 2).

Figure 2. The two coordinate systems in 3D turtle geometry,
easily recognizable by the particular blue z-axis.

In this section we explain, why two different coordinate systems are necessary for 3D turtle geom-
etry and how they affect strategies for creating three-dimensional objects. Furthermore, we dis-
cuss strategies for helping students to overcome issues when entering the third dimension.

2.1 The Need for Two Coordinate Systems
The existence of two different reference systems is a result of two intuitive and complementary
requirements for a 3D design environment. As a consequence, both coordinate systems differ in
their reference point as well as in their movability:
1) The world’s absolute coordinate system starts in the world’s origin and thus is fixed there. It
allows to name the position of the beetle or other objects in the "traditional" way; e. g. (1, 4, 3) for
the point in the world with coordinates x=1, y=4 and z=3.
2) The beetle’s coordinate system arises in the beetle itself and hence is dynamic: It moves to-
gether with the beetle’s position and supports programming from the beetle's point of view – which
makes 3D turtle graphics possible. This coordinate system is primarily important for turning and
moving the beetle within the three-dimensional space.

By using these two coordinate systems, which both seem intuitive at a first glance, inconsistencies
can result from mixing up their specific conceptions, which will be addressed in the following sec-
tion. An additional challenge arises from the fact that Beetle Blocks lacks an explicit separation of
their dedicated instructions. Since there is no extra category (like the existing “Motion” or “Control”)
it is important to keep the different coordinate systems in mind while programming (see fig. 3).

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 4

commands from the view of

the world’s coordinate system
equivalent instructions from

the beetle’s point of view

Figure 3. Exemplary comparison of instructions from different point of views.

2.2 Two Coordinate Systems – Two Ways for Creating 3D Objects
The two coordinate systems allow 3D objects to be constructed in two common, but quite different
ways, which we will explain in the following: One possibility is to move the beetle like it is “going
up stairs” by rotating the beetle around of one of its horizontal axes, i.e. the x- or y-axis. The other
option is to create two-dimensional base areas and layering them on top of each other (see fig.
4).

Figure 4. The two ways of creating 3D objects:
“Going up stairs” on the left, layering base areas on the right.

However, even though the first way seems to be the intuitive and turtle-like approach, it poses a
significant challenge to the students due to a likely confusion of the coordinate systems, which will
be discussed in detail in the next section. In order to overcome such issues, we suggest initially
using the second approach, which we will illustrate afterwards.

2.2.1 “Going Up Stairs”
We explain, why “going up stairs” in 3D is complicated, by illustrating an example from the class-
room: A student intended to program a spiral, which consists of "shifted" squares, but the attempt
failed due to a misconception regarding the two coordinate systems. It is not sufficient to "rotate
the beetle upwards" ("rotate y by 10"), as figure 4 illustrates.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 5

Figure 5. Misconception resulting from the existence of two reference systems

This misconception, which can quickly be adopted by novice programmers, is that the rotational
situation of the beetle is not only changed by the block "rotate y by 10", but also by "rotate z by
90" - in relation to its own dynamic coordinate system, not the world’s fixed reference system.
Recurring to the spiral in figure 4: When implemented correctly, a repeated "rotation" around the
y-axis (from beetle's perspective) is necessary2 in order to achieve the desired result (see fig. 5).
This makes the program quite complicated.

Figure 6. Correct implementation of the spiral.

Generally speaking, rotations around different axes are not even commutative – which makes the
geometrical concept even harder to understand. On top of that, horizontal rotations as a strategy
for creating three-dimensional objects can hardly be applied systematically to a variety of objects.
In conclusion, “going up stairs” as well as horizontal rotations in general most likely should be
avoided in CS introductory lessons.

2.2.2 Layering Base Areas
In contrast to “going up stairs”, layering up base areas on top of each other seems to be an all
intuitive approach for creating three-dimensional objects. At a first glance, it looks like traditional
turtle art in 2D can just be layered on top of each other for creating three dimensional figures (see
fig. 7).

2 Note that Beetle Blocks developer, Bernat Romagosa, has made an optional library for movements relative
to the beetle’s orientation available in Beetle Blocks’ forums: This library allows the spiral in fig. 5 to be
implemented quickly, but still shares the other issues from two-axes-rotations.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 6

Figure 7. Triangles layered up to create a tower.

However, the situation is more complicated than that: It is essential to keep the vertical axis of the
desired 3D object in mind, which goes through the starting point of the beetle when generating the
base area. So, while in 2D the turtle’s starting point for figures usually does not matter, in 3D the
beetle’s starting point – correspondingly the starting point for its dynamic coordinate system – will
define the vertical axis of the resulting 3D object. We illustrate this phenomenon by using the
example of a vase consisting of equilateral triangles in increasing sizes (see fig. 8), similar to the
vases published by Kastl et al. (2017).

Figure 8. Vase-like object consisting of equilateral triangles.

First, we create – in the typical Logo way – an equilateral triangle as base area for the vase (see
fig. 9). The beetle’s start position is – as usual in Logo – in one corner point of the polygon.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 7

Figure 9. Creating a triangle with side length 5 by rotating the beetle around β = 120°:
Just like in two-dimensional Logo.

In the next step, we layer the triangles without varying their size – this will result in the tower
already shown in figure 7 – looking good so far.
However, when modifying the program in the final step to continuously increase the triangles’ side
lengths, a leaning tower will emerge instead of the intended vase (see fig. 10).

Figure 10. Resulting leaning tower by layering traditional constructed triangles in increasing size.

As explained, this is another effect of the two coordinate systems, particularly the vertical z-axis
of the beetle’s dynamic coordinate system, and leads us to the main challenge in 3D turtle geom-
etry: In order to create the desired vase – or generally speaking: in order to create any 3D object
symmetrical to its vertical axis – it is essential to start the creation process of their base area in its
center point. In existing teaching attempts this is achieved by advanced mathematical methods,
like calculating the coordinates of corners using the Pythagorean theorem (Kastl et al., 2017).
Following the proposal of Kastl et al. (2017) to find simpler mathematical methods for 3D objects
like the vase above, we explore possible solutions in the subsequent section.

3. Exploring Concepts of Turtle Geometry in 3D
Our aim is to systematize fundamental concepts of 3D turtle geometry, which support students in
creating their own 3D objects: These concepts should be easily accessible even for novice pro-
grammers and be (re-)usable in a large variety of different projects. Thus, we explore in this sec-
tion, which proven concepts of traditional turtle art in 2D can also be applied in 3D, or how they

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 8

can be adapted to 3D. Subsequently, we put forward a universal approach addressing the vertical
axis problem.

3.1 Traditional Turtle Art for flat objects in 3D
While new approaches to base areas are required when creating actual three-dimensional objects,
traditional turtle geometry can be applied in 3D without further modifications and achieve appeal-
ing results: For example, the swirl from the logo-inspired Turtle Art Gallery3 can also be imple-
mented in an appealing three-dimensional way (see fig. 11) and even looks good printed out (see
fig. 1).

Figure 11. Screenshot and code of Turtle Art Gallery’s swirl brought to 3D.

While the swirl is a specific example, a broad variety of flat objects can be created by just rotating
polygons (see fig. 12), which have been constructed the traditional way (as seen in fig. 9).

Figure 12. 2D turtle art recreated in Beetle Blocks.

In conclusion, Logo’s two-dimensional turtle art can be recreated in 3D programming environ-
ments like Beetle Blocks and thus its concepts can also be taught in introductory lessons – as an
approach which has been proven effective for decades.

3 https://turtleart.org/gallery/index.html

https://turtleart.org/gallery/index.html.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 9

3.2 Regular Polygons as base areas for creating actual three-dimensional Objects
What is fascinating about 3D printing, however, are not flat structures consisting of base areas,
but more the creation of real three-dimensional objects. We focus on regular polygons as base
area for actual 3D objects, because they represent symmetrical structures, which are considered
aesthetic bearing in mind Papert’s “poly pictures” (1972). In 3D turtle geometry the main challenge
in creating base areas is to start in their center point to obtain symmetrical objects (as explained
in section 2.2.2). In the following we address that challenge regarding polygons constructed the
traditional way and subsequently suggest a universal approach to constructing base areas.

3.2.1 Tricks for Polygons constructed traditionally
Regular polygons constructed the usual way will result in “leaning towers”: For example, a simple
layering (and continuous shrinking) of squares leads to a leaning tower (see fig. 13), because the
vertical axis runs through the beetle’s starting point, i.e. a corner, when creating the base area.

Figure 13. Leaning tower of piled squares with vertical axis through corner of the base area.

However, two intuitive tricks are available for some regular polygons, which have been constructed
the traditional way: The first trick finds the center point of squares and hexagons, the second one
turns leaning towers with a triangular or squared base area into symmetrical vases.
1st trick: Moving the beetle to the center point: For squares and hexagons it is possible to determine
the base area’s center with elementary geometry – using the (half) side length and the known
inner angle of 90° or 60° respectively. The resulting tower meets the expectations (see fig. 14).

Figure 14. Tower with vertical axis through circumferential center of the quadratic footprint

We compare the source code of the leaning tower and its symmetrical counterpart achieved by
this trick in figure 15: The simple layering on top of each other, which is basically realized with the

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 10

command "change absolute z by 1", is lengthened with further instructions. This makes the for-
merly easy code much more complicated to read and modify.

Figure 15. Source code of the leaning tower (left) and its symmetrical counterpart, which has been con-
structed finding the center with simple geometry (right)

2nd trick: Rotation of the whole object: In order to create a symmetrical vase, leaning towers as a
whole can be rotated four times by 90° for squared base areas (respectively six times by 60° for
triangular base areas) so that a larger tower with inner bars is formed (see fig. 16). Even though
only small changes in program code are necessary, these bars, however, can interfere in a lot of
objects, e. g. when designing vases.

Figure 16. Symmetrical tower created by four-time-rotation of a leaning tower
showing inner bars.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 11

3.2.2 Creating Polygons using a Stack Register
For generating base areas with the beetle’s start position in their center point, we suggest the
algorithm described in the following: The algorithm’s idea can be understood by novice program-
mers and supports the creation of many different 3D objects. The original program code and vis-
ualization of the geometric situation is as an example shown for a triangle in figure 17 – neverthe-
less the idea is easily adapted for all regular polygons.
Beetle Blocks offers a hidden, not (yet) visualized stack register for the position of the beetle using
the instructions "push position" and "pop position" in the "Motion" category. The beetle’s starting
point in this alternative method is no longer a corner of the polygon to be implemented, but the
(circumferential) center point of the constructed regular polygon. From this point, the beetle moves
to a corner and pushes the current position onto the stack. Then it moves backwards to the center
of the polygon again, rotates around the angle. The last steps are being repeated for the remaining
corners. Eventually, the corner position saved first has to be placed on the stack again. Now the
beetle can "beam" itself to the location of a corner by using "pop position" and then connect the
corners by extrusion and calling "pop position" again. Finally, the beetle has to stop the extrusion
and return to the center of the circle. The latter can be achieved easily, since it is located on the
circumferential line and therefore the beetle only has to "go backwards" again.

Figure 17. Code of stack register based algorithm (on the right),
visualization of the geometric situation for a triangle (on the left).

This approach seems, at first, much more demanding from a student's point of view: Some more
geometrical “tricks” are needed and an invisible stack register is used.
A closer look, however, levels the alleged disadvantages: The geometrical situation can still be
intuitively understood following the beetle movements. Furthermore, the stack register is a funda-
mental data structure in computer science, therefore makes it both comprehensible for younger
students and valuable for CS education (Schwill, 1997). Considering these aspects, this strategy
is appropriate for novices.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 12

Figure 18. Vase consisting of stacked octagons
constructed using the stack register.

In conclusion, in this approach the difficulty of advanced school mathematics has been traded in
for the need of fundamental CS knowledge in comparison to existing teaching attempts. This can
be considered as another benefit from an educational perspective as well.

4. Experiences
Based on the concepts identified, we designed a 7 hours long teaching series for twelve-year-old
students, who had never programmed before. We present our experiences in the following.

4.1 Introductory Lessons with 2D Turtle Geometry for motivating students
In the two initial lessons we introduced concepts of two-dimensional turtle art to the students and
printed – in the lessons itself – their first, mostly flat, objects using a 3D printer in the classroom
(see fig. 19). This highly motivated the students, because they could program their first objects
quickly, watch how they were built in the 3D printer and immediately take them home after school
presenting them to their family members.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 13

Figure 19. Students’ results in the first both hours, printed out in a 3D printer.

While in our experience live printing in the classroom highly increases the students’ motivation, it
is still practicable only in the first lessons: Printing flat objects is done within minutes using stand-
ard 3D printers, but actual three-dimensional objects take a lot longer.

4.2 Long project phase allowing for creative results
In the 3rd and 4th lesson students were introduced to creating 3D objects by layering up base areas
and varying their sizes using variables. Furthermore, they could explore the tricks from section
3.2.1, how formerly leaning towers can be turned into symmetrical vases. In the last three hours
of the teaching series students could work on their own individual projects. Advanced students
were given the opportunity to discover our stack register algorithm.
In general, the students created a broad range of different 3D artifacts: Especially decorative ob-
jects, such as vases, jewelry and small architectural prototypes were very popular. In order to get
an impression, of what actual students’ projects looked like, see figures 20 and 21.

Figure 20. The "Burj Khalifa" model created by a group of students in front of its archetype photo.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 14

5. Conclusion
In this paper, we identified the underlying conceptual difference between 2D and 3D turtle geom-
etry – the existence of two different coordinate systems – and explained its effects on how 3D
objects can be created. Based on this, the big challenge of previous teaching attempts – the use
of complicated advanced mathematical methods for creating base areas around their center point
– is overcome with the concepts explored in section 3: We presented strategies, how some tradi-
tionally constructed base areas can be enhanced for making symmetric 3D objects possible, and
even provided a general solution for all regular polygonal base areas. Furthermore, we showed
that two-dimensional turtle art can be successfully recreated in 3D – completing our collection of
fundamental concepts in 3D turtle geometry. Following these concepts, we designed a teaching
series for programming novices without the mathematical challenges mentioned. Our experiences
from the classroom show the potential of 3D turtle geometry for fostering the students’ creativity.
Even though well-proven teaching concepts for the introduction to algorithms already exist, like
creative teaching with Scratch (Romeike, 2008), established approaches regarding turtle geome-
try, in combination with modern 3D printing technologies offer a special connection to the real
world. Never has it been so easy to transform abstract ideas into physical objects – inspiring even
more programming novices and their teachers. In conclusion, 3D turtle geometry provides another
encouraging setting for students.
Overall, our work can be seen as a first attempt to systematize the fundamental concepts of 3D
turtle geometry for computer science classes. More advanced and promising concepts, such as
recursion in fractals, are yet to be explored.

References
Buehler, E., Kane, S. K., & Hurst, A. (2014). Abc and 3D: Opportunities and Obstacles to 3D Printing in

Special Education Environments. In S. Kurniawan (Ed.), Proceedings of the 16th International

Figure 21. Vase constructed using the stack register in front of a mirror.

header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later 15

SIGACCESS Conference on Computers & Accessability [i.E. Accessibilty], October 20 - 22, 2014, Roches-
ter, New York, USA (pp. 107–114). ACM. https://doi.org/10.1145/2661334.2661365

Kastl, P., Krisch, O., & Romeike, R. (2017). 3D Printing as Medium for Motivation and Creativity in Com-
puter Science Lessons. In V. Dagienė & A. Hellas (Eds.), Informatics in Schools: Focus on Learning Pro-
gramming (pp. 27–36). Springer International Publishing.

Lutz, R. (2013). Enhancing information technology education (ITE) with the use of 3D printer technology.
In W. D. Armitage, R. Friedman, & K. Baker (Eds.), Sigite'13: Proceedings of the 2013 ACM SIGITE An-
nual Conference on Information Technology Education : October 10-12, 2013, Orlando, Florida, USA
(p. 157). ACM Association for Computing Machinery. https://doi.org/10.1145/2512276.2512327

Papert, S. (1972). On making a theorem for a child. In J. J. Donovan & R. Shields (Eds.), Proceedings of the
ACM annual conference on - ACM'72 (p. 345). ACM Press. https://doi.org/10.1145/800193.569942

Romagosa, B., Rosenbaum, E., & Koschitz, D. (2016). From the Turtle to the Beetle: The Beetle Blocks pro-
gramming environment. http://goo.gl/QKpu8H

Romeike, R. (2008). Workshop: A Creative Introduction to Programming with Scratch. In M. Kendall & B.
Samways (Eds.), Learning to Live in the Knowledge Society (pp. 341–344). Springer US.

Schwill, A. (1997). Computer science education based on fundamental ideas. IFIP.
https://link.springer.com/content/pdf/10.1007%2F978-0-387-35081-3_36.pdf

Solomon, C. J., & Papert, S. (1976). A case study of a young child doing turtle graphics in LOGO. In Un-
known (Ed.), Proceedings of the June 7-10, 1976, national computer conference and exposition on -
AFIPS '76 (p. 1049). ACM Press. https://doi.org/10.1145/1499799.1499945

	Abstract
	Keywords
	1. Introduction
	2. Conceptual Differences in 2D vs. 3D Turtle Geometry
	2.1 The Need for Two Coordinate Systems
	2.2 Two Coordinate Systems – Two Ways for Creating 3D Objects
	2.2.1 “Going Up Stairs”
	2.2.2 Layering Base Areas

	3. Exploring Concepts of Turtle Geometry in 3D
	3.1 Traditional Turtle Art for flat objects in 3D
	3.2 Regular Polygons as base areas for creating actual three-dimensional Objects
	3.2.1 Tricks for Polygons constructed traditionally
	3.2.2 Creating Polygons using a Stack Register

	4. Experiences
	4.1 Introductory Lessons with 2D Turtle Geometry for motivating students
	4.2 Long project phase allowing for creative results

	5. Conclusion
	References

