
Investigating Students’ Preexisting Debugging Traits: A Real
World Escape Room Study

Tilman Michaeli
Computing Education Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
91058 Erlangen, Germany
tilman.michaeli@fau.de

Ralf Romeike
Computing Education Research Group

Freie Universität Berlin
14195 Berlin, Germany

ralf.romeike@fu-berlin.de

ABSTRACT
Being able to find and fix errors is an essential skill in computer
programming. Nevertheless, debugging poses a major hurdle in the
K12 classroom, as students are often rather helpless and rely on the
teacher hurrying from one student-PC to the other. Overall, there
is a lack of respective concepts and materials for the classroom
as well as research on how to teach debugging. According to the
constructivist learning theory, teaching and developing concepts
and materials for the classroom must take learners’ preexisting
experience into account to be effective. In their daily lives, students
are confronted with errors long before they build programming
experience: Whether there is a problem with “the internet” or with
their bicycle, they are troubleshooting and locating and fixing errors.
Debugging is a special case of general troubleshooting and shares
common characteristics, such as the overall process or particular
strategies. Thus, the aim of this study is to investigate students’
preexisting debugging traits. To this end, we developed a real-world
escape room consisting of debugging-related troubleshooting exer-
cises. This allows us to observe students’ troubleshooting behavior
in a natural environment. Building upon this, we employed the
escape room approach with around 150 high school students and
analyzed the resulting video data. Based on the data we identify
preexisting debugging traits such as students struggling to gen-
erate hypotheses or to undo changes. Furthermore, they are not
able to effectively test a system and struggle with cognitive load
in topographic search. Therefore, our study firstly contributes to
understanding and explaining the behavior of novice debuggers.
The second contribution is an innovative methodology to analyze
preexisting debugging traits.

CCS CONCEPTS
• Social and professional topics→ K-12 education.

KEYWORDS
debugging, escape room, computational thinking, troubleshooting,
computer science education, K12

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’20, November 19–22, 2020, Koli, Finland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8921-1/20/11. . . $15.00
https://doi.org/10.1145/3428029.3428044

ACM Reference Format:
Tilman Michaeli and Ralf Romeike. 2020. Investigating Students’ Preexisting
Debugging Traits: A Real World Escape Room Study. In Koli Calling ’20:
Proceedings of the 20th Koli Calling International Conference on Computing
Education Research (Koli Calling ’20), November 19–22, 2020, Koli, Finland.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3428029.3428044

1 INTRODUCTION
In programming, finding and fixing errors is an important skill
for both experts and novices. While professional developers spend
between 20% and 40% of their working time on debugging code [38],
debugging poses a major hurdle for students learning to program
[23]. Furthermore, debugging is one of the approaches to Compu-
tational Thinking [46] and hence considered important for every
student.

If we look into K-12 classrooms, we see that teachers lack ade-
quate concepts and materials for fostering and addressing debug-
ging in the classroom [30]. Most of the time is spent rushing from
one student to another, trying to help the students in their strug-
gles, an approach best described as “putting out the fires”. Explicit
teaching of a debugging process, certain debugging strategies, or
the use of debugging tools rarely takes place in the classroom [30].
In consequence, novices are often left alone with their errors and
forced to learn debugging “the hard way” – the same way most
professionals report they have “learned” debugging [38].

According to the learning theory of constructivism, learning is
a constant and active process of refining preexisting models of a
subject by making and reflecting on new experiences [39]. There-
fore, we have to incorporate learners’ preexisting experience to
eventually develop suitable approaches, best practices, and materi-
als for the classroom [2]. This is also emphasised in the concept of
educational reconstruction [7]. Therefore, the aim of this study is
to investigate preexisting debugging traits of K-12 students.

But what preexisting experience on debugging is there? Despite
being considered an aspect of programming, debugging is already
part of students’ daily lives in the form of troubleshooting: Debug-
ging is a special case of troubleshooting – troubleshooting in the
domain of programming [19]. Therefore, we developed debugging-
related troubleshooting exercises and conducted a study among
K-12 students. By analyzing students’ troubleshooting processes
and strategies we can identify certain preexisting traits that in-
fluence or explain novices’ debugging behavior and need to be
addressed in teaching.

In contrast to existing approaches (cf. [41]) that used real world
examples of debugging situations such as giving a description of
what to do when a light bulb stops working, we take this approach

https://doi.org/10.1145/3428029.3428044
https://doi.org/10.1145/3428029.3428044

Koli Calling '20, November 19�22, 2020, Koli, Finland Tilman Michaeli and Ralf Romeike

a step further: Instead of asking participants for how they would
react if theywere put into a given situation, we actually put them in
that situation by using a real world escape room setting.

2 RELATED WORK
2.1 Preexisting Debugging Experience
There is a large amount of related work on the investigation of
learners' preexisting experience for various subjects. For the do-
main of programming, Onorato and Schvanveldt [35] as well as
Miller [31] investigated preconceptions by studying learners �pro-
gramming� in natural language. Gibson and O'Kelly [12] analysed
students' problem solving process for search problems, Kolikant
[22] investigated students' preconceptions regarding concurrency
and synchronisation, and in the commonsense computing series
[24, 42, 43], preconceptions for various topics such as sorting, con-
currency or logic were investigated.

What kind of preexisting experience on debugging do students
have? They frequently �debug� in their daily lives before they learn
to program: If, for example, their bicycle or �the internet� stops
working, they start to troubleshoot. Troubleshooting is the process
of locating the reason for a system malfunction and the subsequent
repair or replacement of the faulty component [32]. Debugging
is troubleshooting in the domain of programming, a special case
of general problem solving [17, 19]. Therefore, similar skills and
strategies are involved in troubleshooting and debugging, as [25]
points out.

The study conducted by Simon et al. [41] within the common-
sense computing series is central to this paper. They investigated
preexisting debugging experiences for university students by ana-
lyzing their troubleshooting behavior to conclude implications for
teaching debugging. To this end, they asked the participants for
their reactions in four real world troubleshooting situations, such
as giving instructions to repair a broken light bulb, troubleshoot-
ing the popular childrens' game �telephone�, or describing their
reaction for further real world troubleshooting instances from the
participant's life. The subjects, university students, answered in
written form. The authors then analyzed those answers for common
characteristics and compared them to the debugging behaviors of
novices and of experts. From the results, they conclude implications
for teaching debugging such as the need to �address the di�erences
between locating an error and �xing it�, emphasizing the impor-
tance of test-only, or that undoing a previous step is an unnatural
behaviour for students. They conclude that debugging is far less
�common sense� than sorting or concurrency is.

Thus, similar to Simon et al. [41], we consider real-life trou-
bleshooting experience to be preexisting debugging experience that
has to be kept in mind when teaching debugging. However, in con-
trast to topics like concurrency, we consider this experience to be
not quite preconceptions, but rather traits: instead of concepts and
attitudes towards debugging, we look at actual skills and behavioral
patterns.

Looking into troubleshooting - and debugging as a special case
of it - outlines the similarities between the two practises: The debug-
ging process, a high-level systematic pursuit of a plan to �nd and
correct errors is characterized as follows (see for example [19]): First,
the program is tested and the failure observed. Then, if necessary,

Figure 1: Visualization of the troubleshooting process based
on Schaafstal et al. [40]

an overview of the program is sought. In the next step, hypotheses
are formulated and experimentally veri�ed. If necessary, the hy-
pothesis is re�ned repeatedly. Eventually, the error is corrected and
the program is tested once more. Zeller [47] labels this approach
the �scienti�c method�. Since debugging is troubleshooting in the
domain of programming, the debugging process can be seen as a
specialization of the general troubleshooting process described by
Schaafstall et al. [40] (see �gure 1).

The same applies to debugging strategies. These are lower-level
practices that support the steps of �nding and re�ning hypothe-
ses. Examples for this are tracing the program �ow using print-
debugging or the debugger, slicing and commenting out or forc-
ing the execution of a speci�c case (see for example [29] or [38]).
Jonassen and Hung [18] consider these strategies to be local trou-
bleshooting strategies, applicable only to a speci�c domain, such as
debugging. For the debugging strategy of tracing, the global coun-
terpart (and therefore general troubleshooting strategy which is
independent of context) is atopographic search, which can go either
forward or backward through the program. For the local strategy
of forcing the execution of a speci�c case and comparing the actual
program output to the expected output,functional/discrepancy de-
tectioncan be seen as the respective global � context-independent
� strategy, and so on [25].

However, on the topic of transferring skills (such as computer
science-related approaches and concepts according to Computa-
tional Thinking), results have often been underwhelming [14]. In
contrast, indications for the transfer of debugging skills beyond the
domain of programming have been shown to exist in a study by
Carver and Risinger [4]. They gave students one hour of debugging
training as part of a larger Logo curriculum. It contained a �owchart
characterizing the debugging process, bug mappings and debug-
ging �diaries� that were always present in the classroom. Besides
an improvement in students' code debugging skills, Carver and
Risinger found improved performance, such as a higher accuracy
and a more focused search, in the non-computer transfer tasks.

In summary, we see that debugging is special case of troubleshoot-
ing. Therefore, the debugging process as well as debugging strate-
gies such as tracing or testing (local strategies) are manifestations
of the general troubleshooting process orglobal troubleshooting
strategiessuch astopographic searchor functional/discrepancy detec-
tion which are context-independent. Furthermore, existing research
suggests, that preexisting debugging experience in the form of trou-
bleshooting in�uences debugging behavior. Nevertheless, there is
not enough insight into preexisting debugging traits of high school

Investigating Students' Preexisting Debugging Traits: A Real World Escape Room Study Koli Calling '20, November 19�22, 2020, Koli, Finland

students - and how they might in�uence their debugging behav-
ior such as the overall debugging process or certain debugging
strategies.

2.2 Escape Room Games as Research Approach
There is an increasing number of studies regarding the usage of
real world escape rooms in various areas of both informal and
formal educational settings. Using an escape room as a method for
education provides various pedagogical opportunities, such as an
engaging and motivating context for learning by applying elements
of game-based learning (e.g. [3, 34]). Furthermore, skills such as
collaboration, critical thinking, and problem solving can be fostered
in a natural way [11, 15, 36]. The content ranges from exercises
and riddles that involve mostly general problem solving or team
coordination skills (e.g. [11, 45]) to knowledge speci�c to a certain
domain or subject, such as computer science [3], pharmacy [8],
physics [44], and many more.

In many educational escape rooms, design criteria, student mo-
tivation and learning success are analyzed. The potential of using
escape rooms as a research method for analyzing students learning
or problem solving processes, however, remains predominantly
untapped.

Järveläinen and Paavilainen-Mäntymäki [16] conducted a com-
parative case study in which they analyzed the learning processes
of three student teams in the context of a research method in in-
formation systems science. They found that the di�erent teams
employed di�erent learning processes in their paths throughout
the escape room.

In the �eld of computer science education, Hacke [15] analyzed
behavioral patterns in problem solving processes for their educa-
tional computer science escape room. To this end, they investigated
the video recordings of 38 groups. For their analysis, they used a
deductive category system to classify behavioral patterns in the
problem solving process. Afterward, the in�uence of those patterns
regarding the overall success in the game was evaluated. They
found promising behavioral patterns such as using the whiteboard,
having a coordinator rather than a leader for the group behaviour,
or having structured task solvers in the team. The majority of those
patterns are on a rather abstract �organisational� or �team com-
position and characteristics� level, and do not focus on the actual
problem solving processes in greater detail.

In summary, we see that applying escape room scenarios as a
research method is a � thus far � overlooked, but promising method.
It enables us to observe and study problem-solving processes in
an organic environment. This way, we can take studying students'
preexisting debugging traits one step further than has been done
so far: Instead of only letting participants describe how they would
react to and proceed in a given situation, we can observe the actual
troubleshooting processes and behavior in a real troubleshooting
situation. Therefore, employing troubleshooting exercises related
to debugging within an escape room scenario enables us to identify
preexisting debugging traits better and more easily.

3 METHODOLOGY
The aim of this study is to identify students' preexisting debug-
ging traits. This helps us understand and explain traits of novice

debuggers, thus providing the basis for developing concepts and
materials on teaching debugging for the classroom. As discussed
above, students' preexisting debugging experience consists of trou-
bleshooting situations in their daily lives. Therefore, we investigate
students' behavior in di�erent debugging-related troubleshooting
situations. This enables us to identify certain preexisting debugging
traits by studying students' troubleshooting process and strategies.

Therefore, we will address the following research question:

RQ Which preexisting debugging traits can we observe within
students?

3.1 Study Design
To answer the research question, we applied a cross-sectional study
design. We developed a live-action escape room scenario consist-
ing of di�erent debugging-related troubleshooting exercises. By
analyzing high-school students' overall troubleshooting process
in debugging-related scenarios and how they apply certain trou-
bleshooting strategies, we can identify commonpreexisting debug-
ging traits.

The escape game itself followed the typical rules: The partic-
ipants had one hour to solve all the puzzles and riddles, open a
variety of locks, and win the game (our game was set in ancient
Egypt: the goal was to �nd a stolen object to end the Pharaoh's
curse). Via a surveillance camera mounted in the room, the partici-
pants' behavior and audio could be recorded. We used the camera's
two-way audio feature to record the participants' communication
and to interact with them to control the game if needed.

Similar to the study Simon et al. [41] conducted with university
students, we used troubleshooting exercises to determine the par-
ticipants' preexisting experience. Instead of having the participants
describe their course of action in writing, the escape room setting
provides the following advantages:

� We observe the actual troubleshooting process and strategies
in a natural environment. Furthermore, the participants are
not able to extensively plan or revise their ��nal answer� as
they would be in an assessment in written form.

� We assess students' reactions if their initial plan does not
work out.

� Teamwork and open communication between team members
makes the troubleshooting process observable, as e.g. Fields
et al. point out [9].

3.2 Subjects
The escape room was employed on seven di�erent occasions. Each
time, one school class visited our university to play the room. Over-
all, about 150 students in groups of four to six played the room.
In total, we had 28 teams attending the escape room. All students
were from upper German high-schools and 14 to 18 years old. Some
of the students had computer science experience, but at most a
year of formal computer science education. Furthermore, some had
previous experience with escape room games, which might provide
advantages with certain �meta-factors� such as how to search a
room, map certain locks to certain exercises based on the solution's
number of inputs, and so on. Overall, we collected 32 hours of video
material.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Preexisting Debugging Experience
	2.2 Escape Room Games as Research Approach

	3 Methodology
	3.1 Study Design
	3.2 Subjects
	3.3 Escape Room Exercises
	3.4 Data Analysis

	4 Results
	4.1 Screen
	4.2 Tangle of Cables
	4.3 Tap the telephone
	4.4 Valley of the Kings
	4.5 Finding-Mr-X

	5 Discussion
	5.1 Generalization and Interpretation of the Results
	5.2 Comparison to literature
	5.3 Remarks on the Methodology

	6 Conclusion
	References

