
Investigating Students’ Preexisting Debugging Traits: A Real
World Escape Room Study

Tilman Michaeli
Computing Education Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
91058 Erlangen, Germany
tilman.michaeli@fau.de

Ralf Romeike
Computing Education Research Group

Freie Universität Berlin
14195 Berlin, Germany

ralf.romeike@fu-berlin.de

ABSTRACT
Being able to find and fix errors is an essential skill in computer
programming. Nevertheless, debugging poses a major hurdle in the
K12 classroom, as students are often rather helpless and rely on the
teacher hurrying from one student-PC to the other. Overall, there
is a lack of respective concepts and materials for the classroom
as well as research on how to teach debugging. According to the
constructivist learning theory, teaching and developing concepts
and materials for the classroom must take learners’ preexisting
experience into account to be effective. In their daily lives, students
are confronted with errors long before they build programming
experience: Whether there is a problem with “the internet” or with
their bicycle, they are troubleshooting and locating and fixing errors.
Debugging is a special case of general troubleshooting and shares
common characteristics, such as the overall process or particular
strategies. Thus, the aim of this study is to investigate students’
preexisting debugging traits. To this end, we developed a real-world
escape room consisting of debugging-related troubleshooting exer-
cises. This allows us to observe students’ troubleshooting behavior
in a natural environment. Building upon this, we employed the
escape room approach with around 150 high school students and
analyzed the resulting video data. Based on the data we identify
preexisting debugging traits such as students struggling to gen-
erate hypotheses or to undo changes. Furthermore, they are not
able to effectively test a system and struggle with cognitive load
in topographic search. Therefore, our study firstly contributes to
understanding and explaining the behavior of novice debuggers.
The second contribution is an innovative methodology to analyze
preexisting debugging traits.

CCS CONCEPTS
• Social and professional topics→ K-12 education.

KEYWORDS
debugging, escape room, computational thinking, troubleshooting,
computer science education, K12

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’20, November 19–22, 2020, Koli, Finland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8921-1/20/11. . . $15.00
https://doi.org/10.1145/3428029.3428044

ACM Reference Format:
Tilman Michaeli and Ralf Romeike. 2020. Investigating Students’ Preexisting
Debugging Traits: A Real World Escape Room Study. In Koli Calling ’20:
Proceedings of the 20th Koli Calling International Conference on Computing
Education Research (Koli Calling ’20), November 19–22, 2020, Koli, Finland.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3428029.3428044

1 INTRODUCTION
In programming, finding and fixing errors is an important skill
for both experts and novices. While professional developers spend
between 20% and 40% of their working time on debugging code [38],
debugging poses a major hurdle for students learning to program
[23]. Furthermore, debugging is one of the approaches to Compu-
tational Thinking [46] and hence considered important for every
student.

If we look into K-12 classrooms, we see that teachers lack ade-
quate concepts and materials for fostering and addressing debug-
ging in the classroom [30]. Most of the time is spent rushing from
one student to another, trying to help the students in their strug-
gles, an approach best described as “putting out the fires”. Explicit
teaching of a debugging process, certain debugging strategies, or
the use of debugging tools rarely takes place in the classroom [30].
In consequence, novices are often left alone with their errors and
forced to learn debugging “the hard way” – the same way most
professionals report they have “learned” debugging [38].

According to the learning theory of constructivism, learning is
a constant and active process of refining preexisting models of a
subject by making and reflecting on new experiences [39]. There-
fore, we have to incorporate learners’ preexisting experience to
eventually develop suitable approaches, best practices, and materi-
als for the classroom [2]. This is also emphasised in the concept of
educational reconstruction [7]. Therefore, the aim of this study is
to investigate preexisting debugging traits of K-12 students.

But what preexisting experience on debugging is there? Despite
being considered an aspect of programming, debugging is already
part of students’ daily lives in the form of troubleshooting: Debug-
ging is a special case of troubleshooting – troubleshooting in the
domain of programming [19]. Therefore, we developed debugging-
related troubleshooting exercises and conducted a study among
K-12 students. By analyzing students’ troubleshooting processes
and strategies we can identify certain preexisting traits that in-
fluence or explain novices’ debugging behavior and need to be
addressed in teaching.

In contrast to existing approaches (cf. [41]) that used real world
examples of debugging situations such as giving a description of
what to do when a light bulb stops working, we take this approach

https://doi.org/10.1145/3428029.3428044
https://doi.org/10.1145/3428029.3428044

Koli Calling ’20, November 19–22, 2020, Koli, Finland Tilman Michaeli and Ralf Romeike

a step further: Instead of asking participants for how they would
react if they were put into a given situation, we actually put them in
that situation by using a real world escape room setting.

2 RELATEDWORK
2.1 Preexisting Debugging Experience
There is a large amount of related work on the investigation of
learners’ preexisting experience for various subjects. For the do-
main of programming, Onorato and Schvanveldt [35] as well as
Miller [31] investigated preconceptions by studying learners “pro-
gramming” in natural language. Gibson and O’Kelly [12] analysed
students’ problem solving process for search problems, Kolikant
[22] investigated students’ preconceptions regarding concurrency
and synchronisation, and in the commonsense computing series
[24, 42, 43], preconceptions for various topics such as sorting, con-
currency or logic were investigated.

What kind of preexisting experience on debugging do students
have? They frequently “debug” in their daily lives before they learn
to program: If, for example, their bicycle or “the internet” stops
working, they start to troubleshoot. Troubleshooting is the process
of locating the reason for a system malfunction and the subsequent
repair or replacement of the faulty component [32]. Debugging
is troubleshooting in the domain of programming, a special case
of general problem solving [17, 19]. Therefore, similar skills and
strategies are involved in troubleshooting and debugging, as [25]
points out.

The study conducted by Simon et al. [41] within the common-
sense computing series is central to this paper. They investigated
preexisting debugging experiences for university students by ana-
lyzing their troubleshooting behavior to conclude implications for
teaching debugging. To this end, they asked the participants for
their reactions in four real world troubleshooting situations, such
as giving instructions to repair a broken light bulb, troubleshoot-
ing the popular childrens’ game “telephone”, or describing their
reaction for further real world troubleshooting instances from the
participant’s life. The subjects, university students, answered in
written form. The authors then analyzed those answers for common
characteristics and compared them to the debugging behaviors of
novices and of experts. From the results, they conclude implications
for teaching debugging such as the need to “address the differences
between locating an error and fixing it”, emphasizing the impor-
tance of test-only, or that undoing a previous step is an unnatural
behaviour for students. They conclude that debugging is far less
“common sense” than sorting or concurrency is.

Thus, similar to Simon et al. [41], we consider real-life trou-
bleshooting experience to be preexisting debugging experience that
has to be kept in mind when teaching debugging. However, in con-
trast to topics like concurrency, we consider this experience to be
not quite preconceptions, but rather traits: instead of concepts and
attitudes towards debugging, we look at actual skills and behavioral
patterns.

Looking into troubleshooting - and debugging as a special case
of it - outlines the similarities between the two practises: The debug-
ging process, a high-level systematic pursuit of a plan to find and
correct errors is characterized as follows (see for example [19]): First,
the program is tested and the failure observed. Then, if necessary,

Formulate Problem Description

Generate Causes

Test

Repair and Evaluate

Figure 1: Visualization of the troubleshooting process based
on Schaafstal et al. [40]

an overview of the program is sought. In the next step, hypotheses
are formulated and experimentally verified. If necessary, the hy-
pothesis is refined repeatedly. Eventually, the error is corrected and
the program is tested once more. Zeller [47] labels this approach
the “scientific method”. Since debugging is troubleshooting in the
domain of programming, the debugging process can be seen as a
specialization of the general troubleshooting process described by
Schaafstall et al. [40] (see figure 1).

The same applies to debugging strategies. These are lower-level
practices that support the steps of finding and refining hypothe-
ses. Examples for this are tracing the program flow using print-
debugging or the debugger, slicing and commenting out or forc-
ing the execution of a specific case (see for example [29] or [38]).
Jonassen and Hung [18] consider these strategies to be local trou-
bleshooting strategies, applicable only to a specific domain, such as
debugging. For the debugging strategy of tracing, the global coun-
terpart (and therefore general troubleshooting strategy which is
independent of context) is a topographic search, which can go either
forward or backward through the program. For the local strategy
of forcing the execution of a specific case and comparing the actual
program output to the expected output, functional/discrepancy de-
tection can be seen as the respective global – context-independent
– strategy, and so on [25].

However, on the topic of transferring skills (such as computer
science-related approaches and concepts according to Computa-
tional Thinking), results have often been underwhelming [14]. In
contrast, indications for the transfer of debugging skills beyond the
domain of programming have been shown to exist in a study by
Carver and Risinger [4]. They gave students one hour of debugging
training as part of a larger Logo curriculum. It contained a flowchart
characterizing the debugging process, bug mappings and debug-
ging “diaries” that were always present in the classroom. Besides
an improvement in students’ code debugging skills, Carver and
Risinger found improved performance, such as a higher accuracy
and a more focused search, in the non-computer transfer tasks.

In summary, we see that debugging is special case of troubleshoot-
ing. Therefore, the debugging process as well as debugging strate-
gies such as tracing or testing (local strategies) are manifestations
of the general troubleshooting process or global troubleshooting
strategies such as topographic search or functional/discrepancy detec-
tionwhich are context-independent. Furthermore, existing research
suggests, that preexisting debugging experience in the form of trou-
bleshooting influences debugging behavior. Nevertheless, there is
not enough insight into preexisting debugging traits of high school

Investigating Students’ Preexisting Debugging Traits: A Real World Escape Room Study Koli Calling ’20, November 19–22, 2020, Koli, Finland

students - and how they might influence their debugging behav-
ior such as the overall debugging process or certain debugging
strategies.

2.2 Escape Room Games as Research Approach
There is an increasing number of studies regarding the usage of
real world escape rooms in various areas of both informal and
formal educational settings. Using an escape room as a method for
education provides various pedagogical opportunities, such as an
engaging and motivating context for learning by applying elements
of game-based learning (e.g. [3, 34]). Furthermore, skills such as
collaboration, critical thinking, and problem solving can be fostered
in a natural way [11, 15, 36]. The content ranges from exercises
and riddles that involve mostly general problem solving or team
coordination skills (e.g. [11, 45]) to knowledge specific to a certain
domain or subject, such as computer science [3], pharmacy [8],
physics [44], and many more.

In many educational escape rooms, design criteria, student mo-
tivation and learning success are analyzed. The potential of using
escape rooms as a research method for analyzing students learning
or problem solving processes, however, remains predominantly
untapped.

Järveläinen and Paavilainen-Mäntymäki [16] conducted a com-
parative case study in which they analyzed the learning processes
of three student teams in the context of a research method in in-
formation systems science. They found that the different teams
employed different learning processes in their paths throughout
the escape room.

In the field of computer science education, Hacke [15] analyzed
behavioral patterns in problem solving processes for their educa-
tional computer science escape room. To this end, they investigated
the video recordings of 38 groups. For their analysis, they used a
deductive category system to classify behavioral patterns in the
problem solving process. Afterward, the influence of those patterns
regarding the overall success in the game was evaluated. They
found promising behavioral patterns such as using the whiteboard,
having a coordinator rather than a leader for the group behaviour,
or having structured task solvers in the team. The majority of those
patterns are on a rather abstract “organisational” or “team com-
position and characteristics” level, and do not focus on the actual
problem solving processes in greater detail.

In summary, we see that applying escape room scenarios as a
research method is a – thus far – overlooked, but promising method.
It enables us to observe and study problem-solving processes in
an organic environment. This way, we can take studying students’
preexisting debugging traits one step further than has been done
so far: Instead of only letting participants describe how they would
react to and proceed in a given situation, we can observe the actual
troubleshooting processes and behavior in a real troubleshooting
situation. Therefore, employing troubleshooting exercises related
to debugging within an escape room scenario enables us to identify
preexisting debugging traits better and more easily.

3 METHODOLOGY
The aim of this study is to identify students’ preexisting debug-
ging traits. This helps us understand and explain traits of novice

debuggers, thus providing the basis for developing concepts and
materials on teaching debugging for the classroom. As discussed
above, students’ preexisting debugging experience consists of trou-
bleshooting situations in their daily lives. Therefore, we investigate
students’ behavior in different debugging-related troubleshooting
situations. This enables us to identify certain preexisting debugging
traits by studying students’ troubleshooting process and strategies.

Therefore, we will address the following research question:

RQ Which preexisting debugging traits can we observe within
students?

3.1 Study Design
To answer the research question, we applied a cross-sectional study
design. We developed a live-action escape room scenario consist-
ing of different debugging-related troubleshooting exercises. By
analyzing high-school students’ overall troubleshooting process
in debugging-related scenarios and how they apply certain trou-
bleshooting strategies, we can identify common preexisting debug-
ging traits.

The escape game itself followed the typical rules: The partic-
ipants had one hour to solve all the puzzles and riddles, open a
variety of locks, and win the game (our game was set in ancient
Egypt: the goal was to find a stolen object to end the Pharaoh’s
curse). Via a surveillance camera mounted in the room, the partici-
pants’ behavior and audio could be recorded. We used the camera’s
two-way audio feature to record the participants’ communication
and to interact with them to control the game if needed.

Similar to the study Simon et al. [41] conducted with university
students, we used troubleshooting exercises to determine the par-
ticipants’ preexisting experience. Instead of having the participants
describe their course of action in writing, the escape room setting
provides the following advantages:

• We observe the actual troubleshooting process and strategies
in a natural environment. Furthermore, the participants are
not able to extensively plan or revise their “final answer” as
they would be in an assessment in written form.

• We assess students’ reactions if their initial plan does not
work out.

• Teamwork and open communication between teammembers
makes the troubleshooting process observable, as e.g. Fields
et al. point out [9].

3.2 Subjects
The escape room was employed on seven different occasions. Each
time, one school class visited our university to play the room. Over-
all, about 150 students in groups of four to six played the room.
In total, we had 28 teams attending the escape room. All students
were from upper German high-schools and 14 to 18 years old. Some
of the students had computer science experience, but at most a
year of formal computer science education. Furthermore, some had
previous experience with escape room games, which might provide
advantages with certain “meta-factors” such as how to search a
room, map certain locks to certain exercises based on the solution’s
number of inputs, and so on. Overall, we collected 32 hours of video
material.

Koli Calling ’20, November 19–22, 2020, Koli, Finland Tilman Michaeli and Ralf Romeike

Figure 2: Finding Mr. X

3.3 Escape Room Exercises
The exercises for the escape roomwere developed in a design-based-
research-process. We oriented the design according to Jonassen
and Hung’s [18] characterization of troubleshooting exercises as
appearing ill-defined, requiring the construction of a conceptional
model of the system, having known solutions with clear success cri-
teria and usually containing only singular fault states. Furthermore,
we designed the exercises in such a way that debugging-related
troubleshooting behaviors such as a systematic troubleshooting
process or particular troubleshooting strategies were necessary and
observable. The respective troubleshooting behaviors we expected
for each of the exercises are described within the results. We almost
completely excluded search-and-find-tasks, which are common in
escape games, as they provide no insights into our research interest.
Throughout the study and the different data collections, we rotated
some of the exercises in and out to adjust the difficulty of the es-
cape game. In the following, we report only on the most successful
exercises with regards to our research interest.

Screen: It is the students’ task to get the screen to work. To this
end, they simply have to plug in its power supply. Furthermore, a
Chromecast is connected to the screen which is used for streaming
the content, but marked with a “do not touch”-sticker. This activity
was developed for analyzing the overall troubleshooting process
and the application of a functional/discrepancy detection strategy.

Tangle of cables: The participants are confronted with a set of
eight daisy-chained USB-cables connecting a LED-flashlight to a
power adapter. Furthermore, they find a box which is prepared in
such a way that they can not look inside without the flashlight.
Two of the cables are defective. The task is to identify the broken
cables and build a sufficiently long chain with the remaining wires
to shine light into the box and read the numbers inside. This activity
was developed for analyzing the overall troubleshooting process
and the application of a functional/discrepancy detection strategy.

Tap the telephone: The participants find a box with five cables
hanging out. Upon inserting a cable into one of the five sockets,
they get audio feedback on how many cables are plugged into the
correct socket. They have to find the right order of cables, somewhat
similar to the game “mastermind”. This activity was developed for
analyzing the overall troubleshooting process.

Valley of the kings: The participants find a map of the valley
of the kings with a route on it. Furthermore, they find a route
description, although some of the arrows describing the route are
wrong. The paper with the route contains the hint to identify the 6
errors. This activity was developed for analyzing the application of
a topographic search strategy.

Finding Mr. X:. A web app (after a tablet has been found) shows
a map of Cairo’s metro system. The participants are tasked with
finding out where Mr. X is going, given his starting station. To this
end, they can place two watchers on the underground tunnels and
get feedback on whether Mr X passed them. After 30 seconds of
waiting, they get another chance to place the watchers. This is one
example of how we actively fostered communication between the
team members by introducing a pause after getting feedback in the
design of the exercises. This activity was developed for analyzing
the application of a topographic search strategy.

Figure 3: Valley of the kings

3.4 Data Analysis
As the aim of our study is to identify preexisting debugging traits,
we need to identify certain patterns in the students’ application
of troubleshooting process and strategies. In order for behavioral
patterns to be considered relevant traits in our study, a certain
frequency of occurrence is required. Therefore, we applied an inte-
grated approach of qualitative and quantitative analysis according
to Mayring [27], consisting of three steps:

First, we analyzed the video data using a structured content
analysis approach according to Mayring [28], similar to [15], to
capture all student behaviors and actions for each of the exercises.
To this end, we deductively developed a category system for which
table 1 provides selected extracts. The category system comprises
all possible behaviors the students could show and employ within
the respective exercises. To avoid neglecting important aspects due
to previously-defined categories, inductive additions were allowed.
The recorded videos form the basis of the evaluation, while a video
segment with a minimum length of 5 seconds serves as a unit of
analysis. To ensure intercoder reliability, a second researcher coded
the video data for six of the groups (about 20 percent of the video
data).

In the next step, we arranged the categories according to the
frequency of their appearance in the material. We only considered
actions that were coded for at least 20 percent of the groups relevant
for further analysis.

In the final step, we identified preexisting debugging traits. To
this end, we interpreted the relevant actions for each individual
group. This was done in a qualitative process: Depending on the

Investigating Students’ Preexisting Debugging Traits: A Real World Escape Room Study Koli Calling ’20, November 19–22, 2020, Koli, Finland

Table 1: Excerpt of the category system for structured con-
tent analysis

Exercise Category
Tangle of cables plug daisy-chain into socket

check individual cables
extend/shorten chain step by step
randomly extend/shorten chain
check only the flashlight
check cable connections

Screen finding the unplugged cable
pressing the screens power button
pressing other buttons
examining the screen
checking the screens connections
checking the sockets connections
checking the area around the screen
plugging in the cable

context, in which the action was exhibited, we mapped it either
to a step of the troubleshooting process (see figure 1), or to a par-
ticular troubleshooting strategy. After mapping, we then analyzed
its respective characteristics (e.g. how they approached a certain
step of the troubleshooting process or applied a particular strategy).
The generalization of such characteristics over all groups form the
preexisting debugging traits.

4 RESULTS
In the following section, we will describe the observed troubleshoot-
ing behavior and strategies for the individual tasks. For every ex-
ercise, we will first outline our hypotheses regarding the students’
approaches according to the troubleshooting process (see figure 1)
and strategies. Subsequently, the actual behavior observed will be
described. In conclusion, the respective results are summed up and
interpreted with regards to preexisting debugging traits.

4.1 Screen
The screen exercise always posed the first puzzle of the room, as it
provided the students with a timer and necessary information for
the next exercise upon completion. We expected the students to:

(1) notice that the monitor is not working (formulate problem
description).

(2) hypothesize, based on this observation, that no power source
is connected (generate causes).

(3) press the power or other buttons, and/or check the inputs
systematically (test).

(4) search for the respective cable (if not spotted beforehand)
and plug it in, solving the exercise (repair and evaluate).

Upon analyzing the video data, we observed the following behav-
iors: Before entering the room, the students received the hint that
“the evil professor was doing something suspicious on the screen”,
so all groups examined the monitor within the first minutes and
noticed it not working. Some groups (30 %) immediately spotted
the loose cable (lying directly beside the monitor), plugged it in and

therefore solved the exercise. Other groups (about 35 %) system-
atically checked the connections at the screen and/or sockets and
then either immediately found the cable or started searching for
it. Few groups explicitly formulated a corresponding hypothesis;
nevertheless, they checked a common cause for such a problem in
reaction to the internal hypothesis “the screen might not be con-
nected correctly”, simply based on their everyday life experience.

A considerable percentage of the other groups (35 %) needed
significantly longer amounts of time or even a hint on how to solve
this exercise. Most of these groups pressed the power button, noting
the lack of any reaction on the screen. Nevertheless, they did not
generate any hypothesis as to the reason for this. Instead, they
checked the area around the monitor in a unsystematic manner or
had a look at the power sockets, but without tracing which cables
go where. Some students even held the unplugged cable in their
hands, but did not decide what to do with it. Eventually, they started
to work on searching the room for different exercises.

Another common behavior we observed among all groups was
trying to press other buttons on the screen, for example to change
the input for the screen. A likely reason for this is that having
chosen the wrong source is a common cause of error the students
might have encountered in their daily lives.Without a power supply,
they saw no feedback on the screen, so this heuristic did not help
them in this particular case (besides giving more clues suggesting
that no power is connected).

In summary, the data for this exercise indicates two preexisting
debugging traits. First of all, some students applied a systematic
troubleshooting process and incorporated experience from their
everyday lives according to our expectations. However, a notable
number of students was not able to generate an initial hypothesis
as to why the screen was not working. Overall, we were surprised
by the problems a lot of students had with this task, as well as the
degree of helplessness shown, which is common in debugging as
well [37].

4.2 Tangle of Cables
For the tangle-of-cables-exercise, we expected the students to:

(1) plug in the daisy-chained USB cables, noticing the flashlight
not working (formulate problem description).

(2) generatemultiple hypotheses based on this observation, such
as the power socket, the power adapter, the cables, or the
flashlight itself not working (generate causes).

(3) systematically check those hypotheses by testing the re-
spective component (test by using strategies such as func-
tional/discrepancy detection).

(4) eventually conclude that some of the cables are not work-
ing, identify those cables and build the daisy-chain without
them, allowing them to shine light into the box and read the
numbers inside (repair and evaluate).

As expected, all students initially tried to plug the daisy-chained
USB cables with the flashlight at its end into a socket. After noticing
that the flashlight does not light up, almost all groups checked the
connection of the individual USB cables. This can be described
as “applying common heuristics”, as participants likely had made
similar experiences in their everyday lives. At this point, many
students explicitly hypothesized that the socket might be faulty.

Koli Calling ’20, November 19–22, 2020, Koli, Finland Tilman Michaeli and Ralf Romeike

To verify this hypothesis, they connected the cables to a different
socket in the room. In reaction to this, the majority of groups
struggled for one of two reasons:

• One part (about 37 %) of the students was unable to gener-
ate any alternative hypothesis. Some groups even checked
a third socket. If their first approach did not work out – even
after getting the hint that the sockets and flashlight are work-
ing fine – they lacked a direction to keep on working on the
problem.

• Other groups (about 30 %) hypothesized or even directly
asked the room operator whether the flashlight might be
broken. However, they lacked an approach to test this hy-
pothesis. Some groups eventually checked the flashlight
with a shorter chain of cables.

To our surprise, only about 25 % of the groups thought to check
whether the flashlight was working when directly connected to the
power adapter. After being stuck, some groups showed an unsys-
tematic trial-and-error-approach, such as switching the position of
individual cables in the chain. A lot of groups needed hints such
as to “check the cables”, or “that socket and flashlight are fine”. At
the point they figured out that some of the cables might be bro-
ken, most groups systematically checked one cable after another
to identify the broken ones. Other groups extended the chain of
cables step-by-step in a systematic manner. No group applied a
binary search for this problem. Given the small number of wires
and (more) efficient method of checking each wire individually,
using a binary search would have seemed inappropriate.

In summary, the data for this exercise suggests three preexisting
debugging traits. Most students applied a systematic troubleshoot-
ing process according to our expectations and even incorporated
experience from their daily lives for the tangle-of-cables exercise,
but only for their first hypothesis. They had significant problems
generating an alternative hypothesis if their first approach did not
work out. To our surprise, if they actually had an alternative hy-
pothesis, they struggled with verifying it, as they did not test the
respective component in an isolated manner.

4.3 Tap the telephone
For this exercise, we expected the students to:

(1) randomly connect cables and sockets (formulate problem
description).

(2) in doing so, notice a correlation between the audio feed-
back and the connected wires and, therefore, understand the
system (generate causes/test).

(3) systematically find the correct position for each cable step
by step by checking each of the remaining sockets for a cable
(repair and evaluate).

Most students started by plugging in all of the 5 cables. De-
pending on the number of matching sockets, they received audio
feedback in the form of beeping sounds. All groups then started
to randomly switch the positions of certain plugs. This way, the
number of beeping sounds either increased or decreased. If the
number of beeping sounds, and therefore the number of correctly
positioned plugs, decreased, we observed an interesting pattern:
Many students did not reverse the changes that led to the decrease,
but kept on switching cables. One group, for example, had already

correctly positioned three plugs by randomly switching positions,
mostly of adjacent plugs. Nevertheless, they kept on doing so, un-
til only one beeping sound was left, and eventually removed all
the plugs and turned their attention to another task for the time
being. Although we cannot say this with certainty, the majority
of the groups showing this behavior seemed to have grasped the
concept of “the more beeping sounds the better”. Nevertheless, at
least for this rather exploratory process, students did not undo
certain changes if they reduced or did not improve the result.

Most groups switched to a more systematic approach after some
time: About half of the groups removed all plugs and started over
by checking all 5 positions for the first plug, then the remaining
four for the next, and so on. The other half identified the already-
correctly-positioned plugs by removing them one after the other,
and then just tested the remaining positions for the remaining
plugs.

In summary, the data for this exercise shows two preexisting
debugging traits. Most groups solved this exercise according to
our expectations: After understanding the system in an exploratory
manner, they applied a systematic process of checking the right
position for each cable step by step. However, we identified the in-
teresting pattern of not undoing changes, which students showed at
the end of their exploration of the system, although they seemed to
have already grasped the meaning of the number of beeping sounds.
Similar behaviors are common in debugging, where novices often
add additional errors by not undoing attempted but unsuccessful
fixes [13].

4.4 Valley of the Kings
For the valley-of-the-kings-exercise, we expected the students to:

(1) understand the system of arrow directions and route using
the given example and comparing the first few directions
with the route (formulate problem description).

(2) trace the route, using some form of auxiliary material to help
keep track of the wrong arrows and/or the current position
(apply forward topographic search strategy).

To our surprise, about 75 % of the groups traced the route more
than twice. For most of these groups, the first three wrong arrow
directions (of six in total) did not pose a problem, but the longer
the route, the more miss-identifications or confusion was observed.
We identified the following reasons for this issue: Students often
tracked their progress using their fingers, but commonly only on
either the map or the route – despite working in a group. This led to
confusion regarding the current position after some time, especially
with simultaneous group discussions taking place.

Another common pattern was that one or two students worked
on the route and the map, while another student wrote down the
errors they identified. Doing so, they frequently encountered prob-
lems in their communication: Some groups perfectly identified
all six errors, but they forgot or miscommunicated to write one
of them down, or wrote it down twice. In general, many groups
started noting things down only after their first trace throughout
the route. Furthermore, although they, for example, were able to
mark the wrong arrows or additional information directly on the
map-paper, many groups chose to do this on a separate sheet of
paper – possibly because they did not want to “destroy” the game

Investigating Students’ Preexisting Debugging Traits: A Real World Escape Room Study Koli Calling ’20, November 19–22, 2020, Koli, Finland

materials. Some groups even transformed the path on the map into
the arrow-representation and then compared it to the route-paper,
but made mistakes in the process of this transformation. In general,
a common pattern was that when re-tracing, the students changed
previously correctly identified wrong arrows as being correct, lead-
ing to even more confusion.

In summary, we were surprised by the problems many students
encountered. We expected the exercise to be rather easy, as it was
inspired by unplugged debugging exercises for primary school
children, albeit with a lengthened route. While understanding the
system such as the meaning of the arrows did not pose a problem,
students struggled with keeping track of their current position
while tracing and/or identifying wrong arrows as correct, especially
towards the end of the route. Similar problems with tracing are
common for programming novices as well [26].

4.5 Finding-Mr-X
For this exercise, we expected the students to:

(1) start from the given entry subway station
(2) systematically isolate the exit station by placing watchers

that provide as much information as possible regarding the
route of Mr. X, such as at tunnels after transit stations (apply
forward topographic search strategy).

For this exercise, we observed several different patterns of stu-
dents behavior. A large percentage of students (about 60 %) actually
employed an optimal or close-to-optimal strategy: Their approach
always started from the given entry point (the final stop of the line)
of Mr. X. Building upon this, they “traced” Mr. X’s route through
the subway system by placing the watchers on relevant subway
tunnels, i.e. those that provide a lot of information, such as stations
directly after transfer points. Based on the feedback they received,
they isolated and identified the subway station in question step by
step in a systematic manner. While waiting the 30 seconds until
they could place the watchers again, one group, for example, dis-
cussed the placement of the next watchers as follows: (A) “Let’s
place the watcher here, he has to pass here” (B) “Yes, exactly, he has
to pass there anyway [so this does not help us]”. Then, B pointed out
a better spot that provides more information as to where Mr. X is
going: (B) “Here, we will know whether he changes from the blue to
the green metro line”. Those groups needed only 3 to 5 iterations of
placing the watchers to solve the exercise.

A common pattern for less efficient groups was to employ a
different kind of topographic strategy: Instead of “tracing” the pos-
sible route, starting from the given entry point throughout the
subway system, they placed their watchers on distant branches of
the subway system to find out whether Mr. X passed them. They
sometimes even chose stations close to the respective final station
instead of the stations directly after transit stations. This way, they
needed a significantly larger number of iterations to find the right
station.

Another common pattern we saw in the data was that partici-
pants began by checking the subway tunnels right next or very close
to the entry station. Only after noticing that due to the 30-second
waiting period, it would take a long time to solve the exercise this
way, they stopped this linear step-by-step tracing.

In summary, we observed two different topographical strategies
employed by the students: One part of the students traced the route
from the entry station in a rather efficient manner. Other students
isolated the subway station by ruling out the branches one after
the other, which appeared to be rather inefficient for this particular
task. In debugging, choosing suitable locations for placing prints or
breakpoints also poses a major challenge for novices [33].

5 DISCUSSION
Overall, most of the traits we identified by observing students
troubleshooting behavior resemble the behavior novices show in
debugging. Therefore, we conclude that those traits must exist be-
fore novices learn to program and are therefore independent from
the programming or debugging domain. We argue that in order for
students to use debugging skills successfully, these traits need to
be addressed explicitly in teaching debugging by conveying corre-
sponding strategies at an abstract level. In the following, we will
generalize the results from the individual exercises and interpret
them with regards to programming and debugging. Furthermore,
we discuss implications for teaching debugging.

5.1 Generalization and Interpretation of the
Results

Preexisting debugging trait: Students struggle with generating hy-
potheses, in particular alternative hypotheses. Regarding the stu-
dents’ overall approach, the data showed that the majority of stu-
dents employed a process similar to the troubleshooting process
described earlier, although they did not formulate every hypothesis
explicitly. Although they generally followed a plan, students had
problems at particular steps of the process. For debugging, (as well
as for troubleshooting, cf. [18, 32]), being able to effectively gener-
ate good and multiple hypotheses is a decisive difference between
experts and novices [13, 20]. With the screen exercise, a notable part
of the students encountered problemswith formulating an initial
hypothesis. In contrast to this, all students were able to generate
and test an initial hypothesis for the tangle-of-cables-exercise. We
suspect that the different domain knowledge needed for those exer-
cises explains this finding: While all students have experience with
operating devices using USB-cables, not all of them are likely to
have experience in working with and connecting a computer screen.
Furthermore, the data indicates that students have problems with
formulating alternative or more than one hypothesis. Many
were stuck after they tested their first hypothesis for the tangle-
of-cables-exercise and had to reject it. Some groups even tried a
third power socket. This is in line with literature, as Bereiter and
Miller report that a wrong troubleshooting path, even in light of
contradicting clues, is often not discarded [1]. For debugging, Mur-
phy et al. report that students often did not recognize they were
stuck and needed to change their approach [33]. They conclude that
especially thinking about alternative bug causes should be incorpo-
rated in debugging instruction. The traits we found in our study
might explain the students’ debugging behavior and support the
importance of fostering the generation of hypotheses, in particular
alternative hypotheses, in teaching debugging.

When debugging code, it is a common behavior for students
to employ a trial-and-error-approach, such as adding semicolons

Koli Calling ’20, November 19–22, 2020, Koli, Finland Tilman Michaeli and Ralf Romeike

or braces, or increase or decrease loop parameters (cf. [30]). Our
data showed similar patterns only after students got stuck. This
indicates that students employing such an approach in debugging
may be stuck and lack any direction on how to work on the problem.
However, our data does not allow us to make statements on the
reason for this; whether they stopped due to being unable to form a
(new) hypothesis (i.e. caused by lack of domain knowledge), or due
to not realizing the need for a systematically-established hypothesis,
we cannot say.

Preexisting debugging trait: Students are not able to effectively
test a system and test single components in an isolated manner. In
the tangle-of-cables-exercise, the students hypothesized that the
power socket might be defect. To test this, they used a different
socket. Murphy et al. [33] as well as Fitzgerald et al. [10] found that
university students commonly employed testing in debugging pro-
grams, but mostly just used sample values provided by an instructor.
They seldom use specific cases such as boundary conditions. In our
study, students had problems with testing their hypothesis that the
flashlight might not be working. In particular, they were not able
to test the component “flashlight” in an isolated system, therefore
disregarding the possibility of defect wires (as was actually the
case). Based on our data, we hypothesize that students have no
preexisting experience regarding effective testing from their
everyday lives, which might contribute to their deficits in testing for
debugging. Therefore, respective skills have to be fostered in teach-
ing debugging from scratch, such as how to test a single isolated
component of code.

Preexisting debugging trait: Undoing changes is not intuitive. When
applying a possible fix to a particular system and evaluating the
results of those changes, students rarely resorted to reverting
those changes. Once more, Murphy et al. found similar results in
their qualitative study of novice strategies in debugging code, even
though there is IDE support for undo in programming. Because of
this, it is a common pattern that novices introduce new bugs in
their code when debugging [13]. Our data indicates that undoing
changes is no intuitive trait students have from their daily lives, and
therefore needs to be addressed explicitly in teaching debugging.

Preexisting debugging trait: Students use domain knowledge and
incorporate heuristics and patterns for common error causes into their
troubleshooting process. Our data shows that students incorporate
previous experience into their troubleshooting process, such as
checking whether the USB-cables are connected properly, whether
the power supply is connected, or whether the right input for
the screen is selected. Applying such heuristics and patterns for
common bugs is an essential debugging skill and professional devel-
opers use these patterns and heuristics, based on their experience,
to “shorten” their debugging process [30]. To support learning from
past errors, many professional developers keep a debugging diary
or debugging log, which they use to document their debugging
experience [38]. Obviously, programming novices lack the respec-
tive experience. Therefore, teachers need to support building such
patterns and heuristics by employing methods such as debugging
diaries (cf. [4]) or or ensuring that situations arise in which students
can learn these behaviors.

Preexisting debugging trait: Students struggle with cognitive load
and lack the means to effectively employ external representation to
help in topographic search and tracing. In the finding-mr-x-exercise,
a lot of students actually chose well-suited subway tunnels to place
their watchers. However, students struggle in applying similar
tracing strategies such as print-debugging in coding as they of-
ten choose inefficient locations or text to print [33] – although
print-debugging is one of the most common debugging strategies
[10]. We suspect that the main problem in coding is not having or
not being able to construct a mental model of the program flow,
similar to the map in our exercise. Nevertheless, this provides an
interesting starting point for further investigation and to compare
students’ placement of such statements in coding and examples
like our subway map.

Students also struggled when tracing the route in the valley-of-
the-kings-exercise. This surprised us, as we used a simple arrow
notation and concrete (rather than symbolic) tracing [6] without
any an additional hurdles such as a programming language syntax.
For tracing in programming, novices’ overall skills have been char-
acterized as poor [26]. Students often lack the necessary accuracy
[37], are not able to raise the abstraction level and in general have
problems with cognitive load [5]. We suspect a similar problem
with cognitive load in our case, as the students struggled in partic-
ular with the last three incorrect arrows. Furthermore, they used
rather inefficient external representations, as is reported for trac-
ing in coding [5]. Therefore, our data suggests that this problem
(pre)exists outside of the programming domain – although our ex-
ercise was arguably very closely related to programming. To tackle
efficient tracing in the classroom, students need to build experi-
ence by practising tracing and how to use external representations
efficiently.

Preexisting debugging trait: Students are easily frustrated. Another
interesting general observation we made was that the majority
of students got frustrated rather quickly. In contrast to typical
school exercises, due to the problem solving character of the escape
room, they did not have any “recipe” for how to solve the different
exercises. Instead of persisting and struggling their way through
a task, many students gave up and preferred to search for more
hints in the room or work on a different exercise. Especially if the
groups split in order to work on different exercises at the same time
and one group had a breakthrough, all team members came (and
often stayed) together to work on the exercise, for which they now
had some clues. We characterize this as seeking success instead of
persisting on a, for the moment, frustrating task. We see similar
reports for students debugging code [21], as debugging is a process
where a certain level of persistence and perseverance is needed.
Our data suggests that persevering in a task is independent from
programming to a certain degree, and needs to be addressed in the
classroom, for example by providing strategies to get unstuck.

5.2 Comparison to literature
As described above, Simon et al. [41] identified university students’
preconceptions regarding debugging with a similar approach. In-
stead of using video data from an escape room, they analyzed stu-
dents’ answers to certain scenarios. Our methodology allowed us to
analyze behavior “live in action” and in greater detail. Furthermore,

Investigating Students’ Preexisting Debugging Traits: A Real World Escape Room Study Koli Calling ’20, November 19–22, 2020, Koli, Finland

our high-school participants are notably younger and likely to have
significantly less troubleshooting experience from their daily lives.
Additionally, in contrast to rather open scenarios, our exercises had
one correct solution due to the escape room setting. This is suitable
for troubleshooting exercises, as most of the time, they require a
particular solution [18].

Nevertheless, our results provide additional evidence for some of
their results, such as undo seeming unnatural for students and that
students often do not generate alternative hypotheses. However,
our methodology and the exercises developed – based on the strong
theoretical basis – allowed us to find further preexisting debugging
traits such as the students incorporating domain knowledge and
heuristics and patterns or the problems with certain strategies such
as topographic search or testing.

5.3 Remarks on the Methodology
Regarding the escape room methodology we applied, we were sat-
isfied with the ability to observe students’ behavior, process and
strategies. In our data, there were groups in which one student
individually solved a certain exercise on his own, as well as groups
which solved a certain exercise in such way that – due to the camera
angle – we were not able to observe closely. In consequence, we
omitted those cases from our analysis. Nevertheless, for the vast
majority (and given the large number of participants) of exercises
and groups, we were able to observe the students’ actions, and to
get additional insights from groups discussions. Furthermore, all
groups showed a high level of motivation due to the scenario. As
the room was not linear, the students were sometimes able to work
on certain tasks in parallel. Students were always able to search
the room for further clues for later exercises. This might have in-
fluenced the tendency to give up on a certain task and focus on
a different exercise for the time being (although we observed few
groups that split to work on tasks in parallel overall).

For the analysis of debugging-related troubleshooting for identi-
fying preexisting debugging traits, we consider our approach to be
suitable. Certainly not all troubleshooting behavior can be trans-
ferred to the domain of debugging. For that reason, some of the
exercises we developed yielded no significant insights into our
research question. Therefore, these exercises were omitted from
this analysis. However, the exercises we are reporting on in this
paper show a strong connection to literature, where the correlation
between debugging and troubleshooting is established. In conse-
quence, debugging-related troubleshooting behaviors according to
literature such as a systematic troubleshooting process or particular
global troubleshooting strategies were necessary and observable.
Our findings strongly support this assumption: The preexisting
debugging traits we identified in this study are reflected in novice
programmers debugging behavior and display a strong overlap
with typical problems of novices as discussed above. Therefore,
we consider this methodology appropriate to answer our research
question. Furthermore, we deem it important to consider these
results when teaching debugging.

6 CONCLUSION
The aim of this study was to investigate students’ preexisting debug-
ging traits. To this end, we observed high school students’ behavior

in different debugging-related troubleshooting exercises in a real
world escape room scenario and analyzed the video data. Overall,
our study provides the following two contributions:

Firstly, we provide an innovative methodological approach to
study students’ troubleshooting and problem solving behavior, pro-
cesses, and strategies. The main advantage in comparison to a writ-
ten assessment of participants’ reactions in given situations is that
we can observe the actual troubleshooting process and strategies
in a natural environment, including the reactions that occur if an
initial approach does not work out. The communication within the
groups, which was actively fostered in the design of the exercises,
turned out to make the participants’ processes observable.

Secondly, the escape room approach and the respective tasks
allowed us to analyze preexisting debugging traits on a strong the-
oretical basis – which are reflected in novices debugging behavior:
Our data shows that the students employ some debugging-related
practises such as a systematic troubleshooting process or the in-
corporation of patterns and heuristics. Nevertheless, they struggle
with generating hypotheses, in particular alternative hypotheses,
and undoing changes. Furthermore, they are not able to effectively
test a system and test single, isolated components. For tracing, our
data indicates that students struggle with cognitive load and lack
the means to effectively employ external representation to help in
their process.

These findings contribute to the understanding of novices’ de-
bugging behavior and allow us to incorporate learners’ preexisting
debugging traits into the design of suitable approaches, best prac-
tices, and materials for the classroom. The analysis of the data
indicates the following implications for teaching debugging:

• Fostering a systematic debugging process: While many
students showed a systematic troubleshooting process, they
switched back to to an unsystematic trial-and-error-approach
when stuck or unable to generate a hypothesis for the cause
of the problem. Conveying a systematic debugging process
and fostering corresponding skills such as generating mul-
tiple hypotheses and undoing changes might help students
get unstuck and improve their independence in debugging,
as has been shown to be successful [4].

• Support building heuristics and patterns for common
bugs: In the troubleshooting exercises, the students applied
heuristics and patterns they learned through experience. For
debugging, novices lack those experiences they can build
upon. Therefore, students should be actively supported in
acquiring respective experience, patterns and heuristics.

• Explicitly conveying debugging strategies: Our data in-
dicates that efficient testing does not play a significant role
in students’ daily lives, which results in a lack of experience
in applying testing as a strategy for troubleshooting. Fur-
thermore, students struggled with tracing in the context of
a topographic search. Therefore, corresponding debugging
strategies such as print-debugging, commenting out or test-
ing need to be addressed explicitly in teaching debugging.

In summary, this study provides deep insights into students’
preexisting debugging experience. The traits we identified can give
teachers an idea of what problems their students might struggle
with in debugging, and therefore an understanding of factors that

Koli Calling ’20, November 19–22, 2020, Koli, Finland Tilman Michaeli and Ralf Romeike

contribute to the “hard way” of learning debugging. This way, they
are able to support their students, making this journey a little less
“hard”. Building upon this, in future research we want to use the
escape room exercises and setting the other way around: Instead of
investigating preexisting traits, we want to analyze the influence
of debugging education on troubleshooting behavior. This way,
similar to the study of Carver [4], we can analyse and measure the
transfer of debugging skills into students daily lives in the sense of
computational thinking.

REFERENCES
[1] Susan R Bereiter and StevenMMiller. 1989. A field-based study of troubleshooting

in computer-controlled manufacturing systems. IEEE transactions on Systems,
Man, and Cybernetics 19, 2 (1989), 205–219.

[2] Jeffrey Bonar and Elliot Soloway. 1985. Preprogramming knowledge: A major
source of misconceptions in novice programmers. Human–Computer Interaction
1, 2 (1985), 133–161.

[3] Carlos Borrego, Cristina Fernández, Ian Blanes, and Sergi Robles. 2017. Room
escape at class: Escape games activities to facilitate the motivation and learning
in computer science. JOTSE 7, 2 (2017), 162–171.

[4] McCoy Sharon Carver and Sally Clarke Risinger. 1987. Improving children’s
debugging skills. In Empirical studies of programmers: Second workshop. Ablex
Publishing Corp., Norwood, NJ, USA, 147–171.

[5] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. 2017.
Using tracing and sketching to solve programming problems: replicating and
extending an analysis of what students draw. In Proceedings of the 2017 ACM
Conference on International Computing Education Research. AMC, New York, NY,
USA, 164–172.

[6] Françoise Détienne and Elliot Soloway. 1990. An empirically-derived control
structure for the process of program understanding. International Journal of
Man-Machine Studies 33, 3 (1990), 323–342.

[7] Reinders Duit, Harald Gropengießer, and Ulrich Kattmann. 2005. Towards science
education research that is relevant for improving practice: The model of edu-
cational reconstruction. In Developing standars in research on science education
edition, H.E. Fischer (Ed.). Taylor & Francis, London, UK, 1–10.

[8] Heidi Eukel, Jeanne Frenzel, and Dan Cernusca. 2017. Educational Gaming for
Pharmacy Students–Design and Evaluation of a Diabetes-themed Escape Room.
American journal of pharmaceutical education 81, 7 (2017), 6265.

[9] Deborah A Fields, Kristin A Searle, and Yasmin B Kafai. 2016. Deconstruction
kits for learning: Students’ collaborative debugging of electronic textile designs.
In Proceedings of the 6th Annual Conference on Creativity and Fabrication in
Education. ACM, New York, NY, USA, 82–85.

[10] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390–396.

[11] Cheri Friedrich, Hilary Teaford, Ally Taubenheim, Patrick Boland, and Brian
Sick. 2019. Escaping the professional silo: an escape room implemented in an
interprofessional education curriculum. Journal of interprofessional care 33, 5
(2019), 573–575.

[12] Paul Gibson and Jackie O’Kelly. 2005. Software engineering as a model of under-
standing for learning and problem solving. In Proceedings of the first ICER. ACM,
New York, NY, USA, 87–97.

[13] Leo Gugerty and G. Olson. 1986. Debugging by skilled and novice programmers.
ACM SIGCHI Bulletin 17, 4 (1986), 171–174.

[14] Mark Guzdial. 2015. Learner-centered design of computing education: Research
on computing for everyone. Synthesis Lectures on Human-Centered Informatics 8,
6 (2015), 1–165.

[15] Alexander Hacke. 2019. Computer Science Problem Solving in the Escape Game
“Room-X”. In Informatics in Schools. New Ideas in School Informatics, Sergei N.
Pozdniakov and Valentina Dagienė (Eds.). Springer International Publishing,
Cham, 281–292.

[16] Jonna Järveläinen and Eriikka Paavilainen-Mäntymäki. 2019. Escape Room as
Game-Based Learning Process: Causation-Effectuation Perspective. In Proceedings
of the 52nd Hawaii International Conference on System Sciences. ScholarSpace 2019,
Waikoloa Village, HI, USA, 1477–1475.

[17] David H Jonassen. 2000. Toward a design theory of problem solving. Educational
technology research and development 48, 4 (2000), 63–85.

[18] David H Jonassen and Woei Hung. 2006. Learning to troubleshoot: A new theory-
based design architecture. Educational Psychology Review 18, 1 (2006), 77–114.

[19] Irvin R Katz and John R Anderson. 1987. Debugging: An analysis of bug-location
strategies. Human-Computer Interaction 3, 4 (1987), 351–399.

[20] ChanMin Kim, Jiangmei Yuan, Lucas Vasconcelos, Minyoung Shin, and Roger B
Hill. 2018. Debugging during block-based programming. Instructional Science 46,
5 (2018), 767–787.

[21] Paivi Kinnunen and Beth Simon. 2010. Experiencing Programming Assignments
in CS1: The Emotional Toll. In Proceedings of the sixth ICER (ICER ’10). ACM,
New York, NY, USA, 77–86. https://doi.org/10.1145/1839594.1839609

[22] Yifat Ben-David Kolikant. 2001. Gardeners and cinema tickets: High school
students’ preconceptions of concurrency. Computer Science Education 11, 3 (2001),
221–245.

[23] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. Acm Sigcse Bulletin 37, 3 (2005), 14–18.

[24] Gary Lewandowski, Dennis Bouvier, Robert McCartney, Kate Sanders, and Beth
Simon. 2007. Commonsense computing (episode 3) concurrency and concert
tickets. In Proceedings of the third ICER. ACM, New York, NY, USA, 133–144.

[25] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero.
2019. Towards a Framework for Teaching Debugging. In Proceedings of the
Twenty-First Australasian Computing Education Conference. ACM, New York, NY,
USA, 79–86.

[26] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin 36, 4 (2004), 119–150.

[27] Philipp Mayring. 2001. Combination and integration of qualitative and quanti-
tative analysis. In Forum Qualitative Sozialforschung/Forum: Qualitative Social
Research, Vol. 2. 1–14.

[28] Philipp Mayring. 2004. Qualitative content analysis. A companion to qualitative
research 1 (2004), 159–176.

[29] Robert C Metzger. 2004. Debugging by thinking: A multidisciplinary approach.
Elsevier Digital Press, Burlington, MA.

[30] Tilman Michaeli and Ralf Romeike. 2019. Current Status and Perspectives of
Debugging in the K12 Classroom: A Qualitative Study. In 2019 IEEE Global Engi-
neering Education Conference (EDUCON). IEEE, Dubai, VAE, 1030–1038.

[31] Lance A Miller. 1981. Natural language programming: Styles, strategies, and
contrasts. IBM Systems Journal 20, 2 (1981), 184–215.

[32] Nancy M Morris and William B Rouse. 1985. Review and evaluation of empirical
research in troubleshooting. Human factors 27, 5 (1985), 503–530.

[33] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky–a
qualitative analysis of novices’ strategies. InACM SIGCSE Bulletin. ACM, Portland,
OR, USA, 163–167.

[34] Scott Nicholson. 2018. Creating engaging escape rooms for the classroom. Child-
hood Education 94, 1 (2018), 44–49.

[35] Lisa Onorato and Roger W Schvaneveldt. 1987. Programmer-nonprogrammer
differences in specifying procedures to people and computers. Journal of Systems
and Software 7, 4 (1987), 357–369.

[36] Rui Pan, Henry Lo, and Carman Neustaedter. 2017. Collaboration, awareness, and
communication in real-life escape rooms. In Proceedings of the 2017 Conference
on Designing Interactive Systems. ACM, New York, NY, USA, 1353–1364.

[37] David N Perkins, Chris Hancock, Renee Hobbs, FayMartin, and Rebecca Simmons.
1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55.

[38] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
2017. Studying the advancement in debugging practice of professional software
developers. Software Quality Journal 25, 1 (2017), 83–110.

[39] Denis C Phillips. 1995. The good, the bad, and the ugly: The many faces of
constructivism. Educational researcher 24, 7 (1995), 5–12.

[40] Alma Schaafstal, Jan Maarten Schraagen, and Marcel Van Berl. 2000. Cognitive
task analysis and innovation of training: The case of structured troubleshooting.
Human factors 42, 1 (2000), 75–86.

[41] Beth Simon, Dennis Bouvier, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney,
and Kate Sanders. 2008. Common sense computing (episode 4): Debugging.
Computer Science Education 18, 2 (2008), 117–133.

[42] Beth Simon, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney, and Kate
Sanders. 2006. Commonsense computing: what students know before we teach
(episode 1: sorting). In Proceedings of the second ICER. ACM, New York, NY, USA,
29–40.

[43] Tammy VanDeGrift, Dennis Bouvier, Tzu-Yi Chen, Gary Lewandowski, Robert
McCartney, and Beth Simon. 2010. Commonsense computing (episode 6) logic is
harder than pie. In Proceedings of the 10th Koli Calling International Conference
on Computing Education Research. ACM, New York, NY, USA, 76–85.

[44] Alpár István Vita Vörös and Zsuzsa Sárközi. 2017. Physics escape room as an
educational tool. InAIP Conference Proceedings, Vol. 1916. AIP Publishing, 050002.

[45] Patrick Williams. 2018. Using escape room-like puzzles to teach undergraduate
students effective and efficient group process skills. In 2018 IEEE Integrated STEM
Education Conference (ISEC). IEEE, 254–257.

[46] Aman Yadav, Ninger Zhou, Chris Mayfield, Susanne Hambrusch, and John T Korb.
2011. Introducing Computational Thinking in Education Courses. In Proceedings
of the 42Nd SIGSCE. ACM, New York, NY, USA, 465–470.

[47] Andreas Zeller. 2009. Why programs fail: a guide to systematic debugging. Morgan
Kaufmann, Burlington, MA, USA.

https://doi.org/10.1145/1839594.1839609

	Abstract
	1 Introduction
	2 Related Work
	2.1 Preexisting Debugging Experience
	2.2 Escape Room Games as Research Approach

	3 Methodology
	3.1 Study Design
	3.2 Subjects
	3.3 Escape Room Exercises
	3.4 Data Analysis

	4 Results
	4.1 Screen
	4.2 Tangle of Cables
	4.3 Tap the telephone
	4.4 Valley of the Kings
	4.5 Finding-Mr-X

	5 Discussion
	5.1 Generalization and Interpretation of the Results
	5.2 Comparison to literature
	5.3 Remarks on the Methodology

	6 Conclusion
	References

