
Networked Embedded Systems in the Physical
Computing Project “Smart City”

Mareen Przybylla1[0000−0002−8477−1464], Andreas
Grillenberger2[0000−0003−1760−2051], and Andreas Schwill1

1 University of Potsdam, August-Bebel-Str. 89, 14482 Potsdam, Germany
{mareen.przybylla,andreas.schwill}@uni-potsdam.de

2 Freie Universität Berlin, Königin-Luise-Str. 24–26, 14195 Berlin, Germany
andreas.grillenberger@fu-berlin.de

Abstract. Physical computing is an appealing topic for CS education
from primary school onward. With suitable tools, children and adoles-
cents actively design and create their own interactive objects as tangible
products of learning using methods and ideas of embedded systems. In
this paper, we present a concept that uses a physical computing project
as a framework to give students basic insight into connecting physical
objects using embedded systems in time-limited contexts. The design
and iterative development of a Smart City results in a product that
contributes to the motivation of the students and can enthuse them for
computer science.

Keywords: Physical Computing · Embedded Systems · CS Teaching · Project-
Based Learning · Smart City · Arduino · Snap!

1 Motivation and Background

Digital change is characterized, among other things, by the fact that many ev-
eryday objects perceive their environment with sensors and react to changes,
exchange data via the Internet and communicate with each other, so that the
physical and virtual worlds are blended. Accordingly, embedded systems have
been a very important research and development area of CS for some time,
resulting in many innovative products and applications. As a result, we are
frequently confronted with CS phenomena in various contexts of our everyday
lives including home automation, traffic and navigation or transportation and
delivery. Consequently, everyone needs at least a basic understanding of and con-
fidence in dealing with the complexity of these modern technologies. Computer
science education therefore is faced with the challenge of adequately reflecting
the relevant aspects in teaching and developing appropriate competencies in this
area. Physical computing has proved its worth as an attractive approach to this
topic: the design and realization of interactive, physical objects allows learners
to develop concrete, tangible products of the real world, which arise from their
imagination. This can be used in computer science education to provide learners

This is an author draft.
The final publication will be available at Springer after the conference.

Andreas Grillenberger
This is an author draft. The original publication is available at 
http://cyprusconferences.org/issep2019/wp-content/uploads/2019/10/LocalISSEP-v5.pdf



with interesting and motivating access to various aspects of embedded systems
design in constructionist and creative learning environments.

In this practical report, a concept is presented that gives heterogeneous
groups of students from different backgrounds a motivating insight into a se-
lection of central concepts of computer science in highly time-limited projects.
In particular, the topic networked embedded systems is focused to teach learners
how to network everyday objects with the help of embedded systems. In the pro-
cess, various technical and organizational challenges are met, such as enabling
wireless communication between different interactive objects or carrying out the
project within limited time-frames. In the following, the relevance of the subject
area for computer science education is briefly outlined and the technical back-
ground is discussed. Subsequently, the methodical approach is presented and
reasoned based on existing requirements. Then content-related project goals,
the pedagogy and structure of the projects as well as materials and tools are
explained. Finally, impressions and experiences from different implementations
are reflected and the respective challenges and solution approaches are discussed.

2 Embedded Systems in Computer Science Teaching

2.1 Representation in Curricula

Embedded systems increasingly gain importance in computer science teaching.
The K–12 Computer Science Standards [5], for instance, recommend to let learn-
ers control robots, have them design, develop and discuss embedded systems, and
to debate the effects of ubiquitous and pervasive computer-controlled devices
of their everyday life. In the English national curriculum [6], already primary
school students are supposed to design, analyze and correct programs according
to specific objectives, including control or simulation of physical systems. The
accompanying teacher’s guide recommends the use of physical systems so that
learners can work with sensors, lights and motors rather than pure simulations.

Also in Germany, computer science education at school level has dealt with
this topic for more than 30 years: articles about integrating topics such as mea-
surement, control and regulation, data processing and automation in school
teaching have regularly been published [3]. In a more recent special issue on
embedded systems of the German CS education journal LOG IN [7], various
teaching examples, approaches and tools are presented that take up this trend.
Different aspects of the broad topic embedded systems are also reflected in the
recommendations for educational standards of CS by the German Informatics
Society (GI) [1, 2]3, which are used in many federal states as a basis when revis-
ing curricula. Typical application areas that are listed include robotics, process
regulation and process control [2]4.

3 An English summary of the educational standards for lower secondary education can
be found in [4].

4 A more detailed description of the occurrence of embedded systems and robotics in
CS education research and school teaching can be found in [12, p. 16ff.].

2



2.2 Central Content for CS Teaching

For the purpose of identifying content aspects in the subject area that are rel-
evant for computer science teaching, the first author of this paper worked out
common characteristics of embedded systems in various fields and application
areas in a structured analysis of central technical literature. The identified com-
monalities are also relevant in physical computing, thus, the resulting extensive
list was analyzed with regard to central aspects, i. e. such technologies, practices
and principles, which are described as characteristic features of the relevant area
in all disciplines. This means that they are recurrent and meet Schwill’s hori-
zontal criterion (see [16]) and are necessary requirements for developing com-
petencies in the respective domains. These were then reduced to their essential
properties by summarizing and abstracting subordinate terms and concepts5.

The resulting technologies, practices and principles can be divided into three
dimensions: Central topics, content areas and procedures of the subject area
include structure and properties of embedded systems, which contribute to char-
acterize and identify different systems and typical problems associated with their
development, e. g. interfaces, peripheral devices and possibilities of data acqui-
sition. Comprehensive objectives, requirements and challenges help to discuss
typical questions and approaches in the design of embedded systems, e. g. sys-
tem quality and real-time requirements. Proposed practices combine technical
and educational considerations and offer strategies to prepare project work with
embedded systems in a suitable way and in accordance with common procedures
in the analyzed domains, e. g. tinkering and prototyping (see [12, p. 41ff.]).

3 Physical Computing in Project Lessons

In order to use a typical working method of computer science practice, a project-
based approach was chosen. Projects, according to Kilpatrick, “emphasize the
factor of action, preferably wholehearted vigorous activity” and involve a “pur-
poseful act carried on amid social surroundings” [11]. Project based learning has
since become a popular method of teaching, especially in CS education [8, 14].
Schubert and Schwill [15] describe the course of projects in computer science
teaching as a structured sequence of steps closely related to the software life
cycle with regular fixed points linking pedagogy and computer science. How-
ever, such a rather strict procedure is considered difficult to implement in class:
On the one hand, project goals and procedures are often not compatible, since
projects in school education are usually rather clear, so that there is neither
the necessity of detailed planning nor the sense of elaborate documentation [9].
At the same time the learners are often overwhelmed with the complexity of
larger projects, which frequently leads to unfinished or bad products [10]. As a
remedy Kastl and Romeike [10] suggest to enrich project-based learning with
agile methods of software development. Accordingly, agile projects start with
a collection of ideas and initial planning, from which user stories emerge that

5 The method and outcomes are described more detailed in [12, p. 40f.]

3



form self-contained modules of the overall project. The actual project work is
organized in cyclic iterations, within which all phases of the project work are run
through (planning, design, implementation, discussion, testing, reflection) and
which result in prototypes or at the end in the finished product. One promising
aspect of integrating agile methods in project-based learning is the possibility
to flexibly select suitable methods according to the respective project needs.

This procedure seems appropriate for physical computing teaching for sev-
eral reasons: Through the iterative development of prototypes, the projects are
given structure and the phases of planning and reflection, which are often ne-
glected in teaching such projects (see [13]), are given a higher priority: Instead
of only drafting a rough plan at the beginning of the project, which no longer
receives attention over time, it is adapted to changing conditions. In addition,
agile methods can be ideally integrated into physical computing activities: For
project planning, the user view is usually taken first, which can be easily realized
by creating user stories. During the creation of concrete tasks for programming
and during implementation, the developer’s perspective is then used to describe
concrete program processes and identify suitable data sources and components.

4 Considerations for the Intended Project
Implementations

In the planned project, the participants were to be involved in practical activi-
ties by networking objects and enriching them with sensors and actuators. This
way, the basics of sensor-actuator control and networking objects with embedded
systems should be addressed in a motivating manner. The following challenges
had to be considered: A strong heterogeneity of student groups had to be as-
sumed, since the project was to be implemented in contexts in which groups of
different classes, grades and schools were formed. Therefore, a framework had
to be found that appeals to all participants equally and allows them to take on
adequate tasks depending on their performance level. The heterogeneity of the
groups also meant that no common prior knowledge of the content or methods
could be assumed. Required knowledge therefore had to be acquired within the
frame of the projects. Furthermore, all implementations were subject to different
time restrictions, so that the concept had to be flexibly adaptable. In order to
meet these challenges, different elements of agile methods were used, e. g. the
use of a project board with user stories, tasks and process representation, the it-
erative production of prototypes or pair programming. In order to maintain the
character of physical computing and take up its basic contents and practices,
particular emphasis was placed on the following design principles6: Integration
of tinkering activities into dedicated learning phases (P1), creation of interactive
objects (P2), development of working prototypes (P3), provision of an interest-
ing theme to trigger imagination and creativity (P4), integration of methods of
creative learning (P5), integration of technical aspects with art/crafting (P6),

6 The derivation of these principles is described in [12, p. 135f.]

4



structuring work processes (P7), selecting tools (P8) and materials (P9) suitable
for the target group and the intended projects, collaborative work on a joint
exhibition (P10) and presentation of the final products (P11).

4.1 Project Theme

In order to provide an interesting theme (P4) for the project, the context “Smart
City” was chosen, which offers clear links to the students’ world of experience,
triggers creative ideas and solutions through its openness (P4/P5) and brings
with it phenomena that are typical for working with embedded systems. The aim
of the project is to create an interactive model city in which embedded systems
capture their environment in different areas (e. g. brightness, traffic) and control
objects (e. g. activate lighting, control traffic lights). For this purpose, the par-
ticipants should either enrich prefabricated objects with sensors and actuators
or design their own interactive objects (P2) and network them with each other.
Networking is associated with the challenge that different sub-projects have to
communicate with each other, so that the planned project goes beyond typical
physical computing projects. Furthermore, there is the difficulty, but also the
chance, that several groups of students work on the same object and with the
same microcontroller at the same time, but individual groups can also be in-
volved in several sub-projects. A clear assignment between object and student
group therefore no longer exists. Both challenges can be solved technically, as
explained in section 4.3.

4.2 Project Structure

The project is divided into separate stages (P7) and can be flexibly adapted to
different conditions. In the introduction and motivation (5 min) the participants
are familiarized with the setting and get an overview of the available tools and
planned processes. In a learning phase (P1), a detailed introduction to physical
computing, the tools and components as well as the corresponding program
elements is given in market place activities (variant A, approx. 1–2 blocks of 90
min, see also section 4.4). In shorter sessions, a tutorial provides insight into the
necessary basics instead (variant B, approx. 10 min). All teams have manuals
available, which they can use as reference books or to acquire knowledge as
required. In a first planning phase (15 min) ideas are collected in brainstorming
(P5), the rough layout of the city is planned and sketched on a model board
and tasks are identified and prioritized. The “letters to the mayor” described
below can be used to make suggestions. In the following phases of project work
and reflection (90 min to several project days) groups of two work on the tasks.
At regular intervals they present their working prototypes (P3) to the “mayor”
of the city, reflect on their progress and define the next work steps. The mayor
has the opportunity to bring in wishes and priorities. This role could be taken
by a student or group of students as city council. In the projects described in
this paper, however, it was assigned to the teachers or supervisors so that they
could influence the project from a pedagogical point of view without the pupils

5



perceiving this as a teacher’s instruction. After several iterations the students
present their “Smart City” in an exhibition, explain their inventions and discuss
them with visitors (P10/P11, 15 min up to several hours, e. g. open-door day).

4.3 Tools: Hardware Decision and Programming Environment

In order to meet the challenges outlined above, it was necessary to require as
little prior knowledge as possible, both in working with embedded systems and
in programming. For the selection of tools this meant that they should reduce
entrance barriers as far as possible so that students can quickly get started
intuitively. At the same time they should also be flexibly usable so that the
projects were imposed with as few restrictions as possible and even complex
ideas remained feasible (P8).

Hardware Concerning hardware, we used a combination of a microcontroller
with a modular system: Instead of wiring sensors and actuators with bread-
boards in a complex and error-prone manner, such systems use conventional
connectors, so that no knowledge of the electronics is required that goes beyond
the distinction between components that are controlled digitally or analogously.
In order to offer a large variety of sensors and actuators, a combination of the
widely used and versatile platforms Seeed Grove and Arduino Tinkerkit is used
(fig. 1). To increase compatibility, the chosen microcontroller boards were based
on the widespread Arduino platform and required WLAN capability for network-
ing. For this purpose, two possible boards were tested and used: Arduino Uno
Wifi and the compatible Wemos D1. To control the microcontrollers wirelessly,
a firmware had to be developed and the programming environment extended ac-
cordingly7. In order to make it as independent as possible from the programming
environment used in the project, all communication among and with the sys-
tems is handled with an interface which is based on the REST principle. This can
be used with all tools that implement the HTTP protocol. We decided against
a persistent storage of the programs on the microcontrollers, since at present,
available solutions permit only either live configuration or persistent program-
ming8 and it was considered more important that the impact of program changes
was immediately visible to the learners. To support the use of all sensors and
actuators available for the projects, relevant options were made accessible via
the REST-based interface and implemented for both microcontroller platforms.

7 To control microcontrollers via USB, often the standardized Firmata protocol is
used, which is based on serial communication, but can not be used for WLAN
communication. Thus a suitable firmware was developed, which can be downloaded
from Github together with the programming environment and learning materials:
https://github.com/maprzybylla/LEGO-Smart-City.

8 A corresponding approach is in development, but was not yet mature enough for a
productive use in schools (see http://microblocks.fun) at the time of the implemen-
tation of our projects.

6



Programming Environment Because of the expected heterogeneity of our
learner groups, we aimed at a programming environment that allowed both ex-
perienced and inexperienced learners with regard to programming to work to-
gether and thus to enable both simple and technically demanding projects. We
decided for the block-based programming environment Snap!, which is flexibly
expandable and by default supports HTTP access and thus allows to use REST
interfaces. For this purpose, we developed an extension for controlling the micro-
controllers via WLAN. The blocks implemented for this purpose were designed
in such a way that they build purely on blocks existing natively in Snap! and thus
can be used in any Snap! derivatives such as Snap4Arduino or IoT-Snap (fig. 1).
In the long run, this will make it possible to switch flexibly between WLAN
and USB when controlling the microcontrollers and thus, it will allow to take
advantage of both the persistent storage of programs and the live configuration
of microcontrollers.

Fig. 1. Arduino Uno Wifi with Tinkerkit and Grove components and IoT-Snap scripts.

4.4 Work Materials: LEGO Bricks, Craft Materials, Manuals,
Market Stalls, Letters

For the construction of the Smart City, model building boards are laid out with
writable foil on which the students can plan and draw the layout of their city.
LEGO bricks are used to construct the buildings, which is advantageous because
the teenagers can handle them easily, are creative and need only a few further
aids. A disadvantage is the limited mechanical compatibility of the LEGO bricks
with the TinkerKit and Grove components. For the integration of sensors and
actuators into the projects, therefore, e. g. adhesive tape, hot glue, wire and cord
are used, which so far proved to be generally practicable (P6/P9). All project
groups had access to comprehensive manuals and cheat sheets as references de-
scribing the interaction of hardware and programming environment. For some

7



groups, additional market stalls were set up (fig. 2) for market place activities, in
which they independently worked out the relevant contents on the basis of vari-
ous tasks. The market stalls were designed in such a way that they can be solved
by students with little prior knowledge, but at the same time are not trivial. For
differentiation there are extra tasks, which deepen selected contents and skills.
All market stalls have the same structure and the corresponding worksheets con-
tain a list of the required components, assembly instructions and finally several
tasks with increasing complexity. The learners receive route cards on which they
document their progress and on the basis of which the advancement is also vis-
ible for the teacher. In order to stimulate ideas, a scenario is presented to the
students in which the citizens of the city are called upon to participate with
suggestions and project proposals in the further development of their city to-
wards a “Smart City”. Some citizens have already used this opportunity and
sent letters with suggestions to the mayor, e. g. noise level measurement at the
goods station to keep the night’s rest, an alarm system to guard the city treasure
or an automated greenhouse to increase the vegetable harvest. These letters are
presented to the learners and they are asked to brainstorm additional ideas.

Fig. 2. Market stall with Grove Starter Kit, manual and work sheets.

5 Experience

The project has so far been carried out with 14 groups (approx. 215 students
aged 10 to 18). It was tested in several different variants, each with distinct
framework conditions, which are explained in the sections below and evaluated
with regard to the following questions:

1. How do the methods, tools and materials help to achieve the project goals?
2. Which problems arise depending on the different conditions and how can

they be solved?

8



5.1 Group Compositions and Framework Conditions

Half-day projects with heterogeneous groups At the University of Erlan-
gen-Nuremberg the concept was used to convey a positive image of computer
science to school students and to enthuse them for this subject in four-hour
projects. The participants came from different schools and classes and were very
heterogeneous in their age structure. In addition to the short technical intro-
duction to physical computing (variant B), the students also received a detailed
introduction to agile practices in projects. A project board was used to visualize
user stories and tasks in the process, stand-up meetings were called regularly
and the status of the prototypes was presented to the mayors.

Project week in a school with a heterogeneous group A further im-
plementation took place at a grammar school during a project week before the
school festival. Also here the goal was to inspire students to take computer sci-
ence courses. At the same time the elective subject should be present at the
school festival with the developed “Smart City”. This project was designed to
fill two school days with six lessons each, so that much more time was avail-
able for the development of the model city. Here, too, the project participants
formed a very heterogeneous group (students of grades five to eleven). In this
implementation, variant A (market place activities) was implemented and the
project board as well as individual stand-up meetings were used.

Half-day projects with homogeneous groups As a third variant, the con-
cept is regularly used at the University of Potsdam in three- to five-hour projects.
The challenge is that parallel activities take place in which the students partici-
pate in smaller groups, so that not the whole project team is present continuously.
For time reasons, variant B of the learning phase (tutorial) is preferred in this
scenario. The use of agile methods is largely dispensed with, these are reflected
above all in the structure of the implementation: User stories manifest in the
aforementioned letters to the mayor and stand-up meetings are present in the
form of discussions with the mayor.

5.2 Results and Observations

In all implementations similar positive experiences were gained: By using agile
methods either explicitly or in the structure of the projects, a strong differ-
entiation between the student teams working in pair programming took place
automatically. Thus, in general little frustration arose, since the groups inde-
pendently chose adequate tasks that were neither too difficult nor too simple.
At the same time, most of the participants seemed very eager to learn, as the
challenges were usually self-invented so that intrinsic motivation arose to achieve
the project goals that had been set. This was most noticeable in the group who
presented the results to the public at the school festival, probably because this

9



was the group with the longest time-span available and thus with the most ad-
vanced and detailed results. Groups who received more detailed introductions
and had longer learning phases beforehand, achieved more sophisticated results,
however, it must be noted that they also had more time available for the project
phase. In the other groups, it was possible for the students to start working im-
mediately, but they mostly worked only on their sub-project and focused less on
networking different objects. Impressions from the projects are shown in fig. 3.

The choice of hardware and software seemed to contribute to the success of
the projects. Due to the use of power banks, the microcontrollers were not bound
to one location, but could be placed anywhere in the “Smart City”. However,
some problems occurred in groups where only little time was available to master
technical hurdles. In projects that used Arduino Uno Wifi, large latencies oc-
curred during WLAN communication, thus it is recommended to use the faster
and more powerful Wemos D1 microcontrollers (or comparable devices) when
possible. The extensive amount of sensors and actuators gave rise to a large
variety of ideas. The students were able to implement their projects using the
Snap! programming environment regardless of their age groups.

Difficulties sometimes occurred when students tried to install sensors and
actuators in their LEGO brick objects, so we provided them with hot glue guns
in cases where no less permanent attachment was possible. Students had to be
very careful not to damage electronic components by the heat. If used on smooth
surfaces, the adhesive could later be removed without leaving any residue.

There was a great diversity in the overall projects, ranging from rather small
cities that were planned in detail and lovingly designed to large and less detail-
oriented cities. However, the individual projects that were put together in the
cities were surprisingly similar in nature, even in groups without the letters to the
mayor: for example, there were sensor-controlled lighting elements, traffic lights
and information displays in every city. Despite the strong self-regulation during
the projects, it was therefore automatically necessary for all learners to deal
with suitable data acquisition, the control of various actuators and conditional
statements, among other things, so that the project proved to be well suited
for the targeted teaching of basics of sensor-actuator control and networking
objects in the subject area embedded systems. The project was also suitable
to introduce the most inexperienced students to basic programming concepts
without overwhelming them.

Although agile methods such as stand-up meetings and time estimation were
introduced and a project board was made available in most groups, these were
used only sparsely by the students. Stand-up meetings did not always take place
regularly, but only when really needed, for example when it was necessary to
clarify how the city should be organized because sub-projects ran the risk of
blocking each other. As the size of the projects increased, however, such methods
seemed to become more relevant and thus they were usually observable in the
longer projects.

10



Fig. 3. Impressions from the projects (top left to bottom right): a spaceship landing
platform, students programming a cargo ship with loading crane, “done” section of a
project board, smart city with television tower with rotating platform and automated
railway crossing.

6 Conclusion and Perspective

All in all, the “Smart City” project has proved successful in all its implementa-
tions. The chosen context motivated the students and aroused their interest in
microcontrollers and their significance in reality, but also allowed a lot of room
for creativity in the project implementations. The hardware and software were
easy to use for the students, the only problem being latencies caused by the con-
trol of the microcontrollers via WLAN, which had to be taken into account in
the projects and can be avoided with appropriate hardware decisions. The orien-
tation towards agile methods was useful to structure the project work, especially
through the iterative and prototype-oriented development of the sub-projects.

In order to solve some minor existing problems, initial ideas are available,
such as the design of 3D-printed adapters, which make it easier for students
to connect components with LEGO bricks. In general, the concept proved to
be well suited to give learners with different abilities a motivating insight into
microcontroller programming, the interaction of sensors and actuators and the
networking of embedded systems. Depending on the concrete objectives, the
idea can be adapted technically, methodically and in terms of content to the
respective learning group. For this, only little effort is needed, which makes the
concept very flexible. In addition, the project offers good starting points for
subsequent lessons. For example, app development for smart home control with
mobile devices could be just as well integrated as discussions on the potentials
and dangers of increasing digitalization.

11



References

1. Arbeitskreis Bildungsstandards: Grundsätze und Standards für die Informatik in
der Schule. Bildungsstandards Informatik für die Sekundarstufe I. [Principles and
Standards for Computer Science in Schools. Educational Standards for Computer
Science in Lower Secondary Education]. Supplement to LOG IN 150/151 (2008)

2. Arbeitskreis Bildungsstandards SII: Bildungsstandards Informatik für die Sekun-
darstufe II [Educational Standards for Computer Science in Lower Secondary Ed-
ucation]. Supplement to LOG IN 183/184 (2016)

3. Baumann, R.: Eingebettete Systeme verstehen. Teil 1: Kreatives Experimentieren
mit Arduino [Understanding Embedded Systems. Part 1: Creative Experimenta-
tion with Arduino] 32(171), 33–45 (2012)

4. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: Educational Stan-
dards for Computer Science in Lower Secondary Education. SIGCSE Bull. 41(3),
288–292 (2009)

5. Computer Science Teachers Association: CSTA K-12 Computer Science Standards,
Revised 2017. http://www.csteachers.org/standards (2017)

6. Department for Education: Computing programmes of study: key stages 1 and 2.
National curriculum in England (2013)

7. Fachbereich Erziehungswissenschaft und Psychologie der Freien Universität Berlin
(ed.): Eingebettete Systeme. No. 185/186 in LOG IN – Informatische Bildung und
Computer in der Schule, LOG IN Verlag GmbH, Berlin (2016)

8. Fincher, S., Petre, M.: Project-based Learning Practices in Computer Science Ed-
ucation. In: FIE ’98. 28th Annual Frontiers in Education Conference. Moving from
‘Teacher-Centered’ to ‘Learner-Centered’ Education. vol. 3, pp. 1185–1191. IEEE
(1998)

9. Hartmann, W., Näf, M., Reichert, R.: Informatikunterricht planen und durchführen
[Planning and conducting computer science lessons]. eXamen.press, Springer-
Verlag, Berlin Heidelberg (2007)

10. Kastl, P., Romeike, R.: “Now They Just Start Working, and Organize Themselves”
First Results of Introducing Agile Practices in Lessons. In: Proceedings of the 15th
Workshop in Primary and Secondary Computing Education. pp. 25–28. ACM, New
York, NY, USA (2015)

11. Kilpatrick, W.H.: The project method: the use of the purposeful act in the educa-
tive process. Teachers College, Columbia University (1929)

12. Przybylla, M.: From Embedded Systems to Physical Computing: Challenges of
the “Digital World” in Secondary Computer Science Education. Doctoral thesis,
Universität Potsdam (2018)

13. Przybylla, M., Romeike, R.: The Nature of Physical Computing in Schools. In:
Proceedings of the 17th Koli Calling International Conference on Computing Ed-
ucation Research. pp. 98–107. ACM (2017)

14. Romeike, R., Göttel, T.: Agile Projects in High School Computing Education:
Emphasizing a Learners’ Perspective. In: Proceedings of the 7th Workshop in Pri-
mary and Secondary Computing Education. pp. 48–57. ACM, New York, NY, USA
(2012)

15. Schubert, S., Schwill, A.: Didaktik der Informatik [Didactics of Computer Science].
Spektrum Akademischer Verlag, Heidelberg, 2 edn. (2011)

16. Schwill, A.: Computer Science Education Based on Fundamental Ideas. In: Pro-
ceedings of the IFIP TC3 WG3.1/3.5 Joint Working Conference on Information
Technology: Supporting Change Through Teacher Education. pp. 285–291. IFIP,
Chapman & Hall, Ltd., London, UK (1997)

12


