Improving Debugging Skills in the Classroom — The Effects of
Teaching a Systematic Debugging Process

Tilman Michaeli

Computing Education Research Group
Friedrich-Alexander-Universitat Erlangen-Niirnberg
Martensstrafie 3, 91058 Erlangen, Germany
tilman.michaeli@fau.de

ABSTRACT

Debugging code is a central skill for students but also a consid-
erable challenge when learning to program: helplessness and, in
consequence, frustration when confronted with errors is a common
phenomenon in the K12 classroom. Debugging is distinct from gen-
eral programming abilities, therefore it should be taught explicitly.
Despite this, debugging is an underrepresented topic in the class-
room as well as in computer science education research, as only
few studies, materials and concepts discuss the explicit teaching of
debugging. Consequently, novices are often left on their own in de-
veloping debugging skills. This paper analyses the effectiveness of
explicitly teaching a systematic debugging process, especially with
regard to the students’ self-efficacy and the resulting debugging
performance. To this end, we developed an intervention, piloted it
and then examined it in a pre-post-control-group-test-design: Both
experimental and control groups were surveyed using a question-
naire and given debugging exercises as a pre-test. Afterward, the
intervention was carried out in the experimental group, while the
control group continued to work on debugging exercises. During
the post-test, the students once more worked on debugging exer-
cises and were surveyed. The results show a significant increase
in both self-efficacy expectations and debugging performance in
the experimental group in contrast to the control group. Therefore,
our study provides empirical arguments for explicitly teaching de-
bugging and simultaneously offers a hands-on approach for the
classroom.

CCS CONCEPTS

« Social and professional topics — K-12 education;

KEYWORDS

debugging, teaching practice, CS education, intervention study

ACM Reference format:

Tilman Michaeli and Ralf Romeike. 2019. Improving Debugging Skills in the
Classroom — The Effects of Teaching a Systematic Debugging Process. In
Proceedings of WiPSCE °19, Glasgow, Scotland, October 23-25, 2019, 7 pages.
https://doi.org/xxx

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WIPSCE 19, October 23-25, 2019, Glasgow, Scotland

© 2019 Copyright held by the owner/author(s).

ACM ISBN xxx.

https://doi.org/xxx

Ralf Romeike
Computing Education Research Group
Freie Universitit Berlin
Konigin-Luise-Str. 24-26, 14195 Berlin, Germany
ralf romeike@fu-berlin.de

1 INTRODUCTION

Programming requires a multitude of competencies and their teach-
ing represents a central challenge in computer science education.
Learners do not only have to understand programming concepts,
but they also need to be able to independently find solutions when
being confronted with errors — an essential skill in the context of
programming: Systematically examining programs for bugs, finding
and fixing them is a core competence of professional developers.
They spend between 20 and 40 percent of their working time debug-
ging [27]. However, dealing with errors is particularly difficult for
programming novices and poses a major obstacle when learning to
program [22]. As programming novices tend to make more errors,
this often is a major source of frustration [26]. Effective debugging
therefore facilitates the process of learning to program.

Moreover, debugging skills do not only play a major role in
the programming domain: debugging is also ubiquitous in our ev-
eryday life and research findings indicate that the explicit teach-
ing of debugging can result in a transfer of debugging skills to a
non-programming domain [8]. Recently, debugging has gained an
increasing amount of attention in the context of computational
thinking [35]. Thus, debugging is prominently found in recent cur-
ricula that build upon computational thinking such as the British
“Computing Curriculum” [7].

Despite the importance of teaching debugging, there are surpris-
ingly few studies dealing with the explicit teaching of debugging
skills. At the same time, teachers lack concepts and material for
teaching debugging. Instead, they focus on content such as algo-
rithmic concepts or language syntax when teaching programming
[24]. Therefore, novices are often left alone with their errors and,
consequently, are forced to learn debugging “the hard way”.

The aim of this intervention study is to examine the influence of
the explicit teaching of a systematic process to debugging. With the
focus being on the influence of this intervention on students’ self-
efficacy and debugging performance. For this purpose, we developed
and piloted an intervention and examined it in a pre-post-control-
group-test-design.

This paper is structured as follows: In section 2, related research
regarding a systematic debugging process and debugging in the
classroom is discussed. In section 3, we outline the methodology of
our intervention study and the pre-post-control-group-test-design.
Afterward, we present our results regarding the effects on self-
efficacy (RQ1) and debugging performance (RQ2). In section 5, the
results are discussed and in section 6, we present our conclusions.

https://doi.org/xxx
https://doi.org/xxx

WiPSCE *19, October 23-25, 2019, Glasgow, Scotland

2 RELATED WORK

2.1 Debugging skills

Debugging describes the process of finding and fixing errors. De-
bugging skills differ from general programming skills, as [1] or [12]
show. They found, that, while pronounced debugging skills usually
indicate corresponding skills in programming, the reverse is not
necessarily true: Good programmers are not always good debuggers.
This raises the question: What makes a “good” debugger?

The use of debugging strategies — sometimes referred to as
tactics — plays an important role in the debugging process [11]:
strategies such as tracing the control flow using print-f debugging,
commenting out code or slicing can provide information that helps
to localize the error [31]. One of the main differences between ex-
perts and novices is the efficiency of applying debugging strategies
[23]. Murphy et al. [25] give an overview of strategies commonly
employed by novices.

Furthermore, the proficient usage of tools — most prominently,
but not limited to the debugger — can support the debugging process
in a similar way as strategies and is, therefore, also seen as an
integral debugging skill.

Often, there is no need to apply advanced debugging strategies
or tools in order to find and fix errors: With experience, and there-
fore the application of heuristics and patterns, typical errors
and their possible causes are more easily found. To support this
“learning from previous mistakes”, many professional developers
maintain a debugging “diary” to document their debugging experi-
ence [27].

The application of a systematic debugging process — some-
times referred to as strategy — i.e. the structured pursuit of a high-
level plan, represents the fundamental skill upon which the afore-
mentioned skills are built. For professional debuggers, a large series
of process models can be found (such as [13, 14, 19, 31, 34, 36]).
These models agree on the following aspects: After testing the pro-
gram and becoming aware of errors, hypotheses are repeatedly
formulated, verified in experiments and, if necessary, refined until
the cause of the error is found. This procedure is based on the so-
called scientific method [36], which is typically implicitly applied
by professional developers [27].

2.2 Error Types

Depending on the type of the underlying error, the debugging
process varies greatly. This is mostly caused by differences in in-
formation available to the programmer. For example, for errors
found by the compiler, line number and error message are provided.
Therefore, the step of locating the error is often redundant. In con-
trast, for logical errors, no information is given. Here, locating the
error is the most difficult step [14].

There is a variety of error type categorizations (cf. [17, 18, 21, 33]).
Typical classifications of errors distinguish between syntactic (mis-
takes in spelling or punctuation), semantic (mistakes regarding
the meaning of the code) and logical errors (arising from a wrong
approach or a misinterpreted specification), compile-time and run-
time errors, or differentiate between construct-related (in the sense
of programming language specific constructs) and non-construct-
related errors.

Tilman Michaeli and Ralf Romeike

Studies on error frequency for novices commonly focus either
on specific error types (such as errors detectable by tools or the
compiler), exclusively consider the final versions of programs (and
therefore omitting interim versions), or feature only small sample
sizes. For this reason, it is difficult to make quantitative statements
based on literature alone. Altadmri and Brown [4] give an overview
of bugs commonly encountered by novices in Java, based on the
analysis of the BlueJ-Blackbox data set. Their study shows that
overall semantic errors occur more frequently than syntactic ones,
particularly once users show a certain degree of programming profi-
ciency — although a syntax error was the most common error found.
When they do occur, these syntactic errors are fixed very quickly,
due to their low error severity (typically measured based on the time
needed to fix an error). In a study with a limited data set, Hall et al.
[16] showed that logical errors seem to be the most widespread type.
Spohrer and Soloway [32] add to this that non-construct-related
errors occur more frequently than construct-related ones, contrary
to popular belief. Errors the compiler does not identify are con-
sidered much more difficult — and therefore time-consuming - to
find and fix [4, 25]. Nevertheless, teachers report that compile-time
errors also pose a major problem for novices, especially in the K12
classroom and therefore need to be addressed in teaching materials
[24].

2.3 Teaching Debugging

Murphy et al. [25] as well as Kessler and Anderson [20] argue that
debugging skills should be explicitly taught. Despite this, there are
surprisingly few studies, both on university teaching and in K12,
which deal with the explicit teaching of debugging.

2.3.1 Debugging in Higher Education. Chmiel and Loui [9] used
voluntary debugging tasks and debugging logs to promote students’
debugging skills. It turned out that students who had completed the
voluntary debugging tasks needed significantly less time to debug
their own programs. However, this correlation was not reflected
in the exam results, which, contrary to expectations, were only
slightly better.

Katz and Anderson [19] investigated the effect of teaching differ-
ent debugging processes, such as forward-reasoning and backward-
reasoning, for debugging LISP programs. Different groups of stu-
dents were first taught one of the approaches before they were
free to choose their own procedure. This showed that students
continued to use the procedure they had been taught.

Allwood and Bjorhag [3] investigated to what extent written
debugging instructions could support the process. While the num-
ber of bugs did not differ between the experimental and control
groups, the number of bugs fixed (especially semantic and logical)
was significantly higher when written notes were available. Since
no differences in the strategies used between the groups were rec-
ognizable, the authors concluded that the differences had to be on a
higher level and, above all, that a systematic process to debugging
was decisive.

Bottcher et al. [6] provided a systematic debugging procedure
(see figure 1) and the use of the debugger in an explicit teaching unit.
The debugging procedure — using the Wolf Fence algorithm (binary
search) as an analogy — was explained in a live demonstration and
an exercise with debugging tasks was performed. The evaluation

Improving Debugging Skills in the Classroom

formulate an expectation on
program state at that location

find a location to
(sub-)divide the system

use symbolic debugger
to check the expectation

defect not
detected

defect
detected

fix bug AND

START "
write test case

Figure 1: Debugging procedure conveyed by Bottcher et al.
(6]

showed that only a few students applied the conveyed systematic
process, but quickly returned to a non-systematic “poking around”.

2.3.2 Debugging in the K12 classroom. Carver and Risinger [8]
provided a systematic debugging process for LOGO with promising
results: They gave the students one hour of debugging training
as part of a larger LOGO curriculum. They used a flow chart that
characterized the debugging process (see figure 2), “bug mappings”,
and debugging logs that were available in the classroom. The results
(without a control group) showed a shift from brute force to a
systematic approach.

Test a program.
It it's not
right...
Askyourself, Then ask yourself, Then use the Once you've
"Whatisthe "Does the pregram information to found the bug,
problem?* have subprograms?" find the bug. ask yoursslf,
"What should
the fix be?*
And "Whattype And "Where might Otherwise,
of bug could the bug be?" read every
cause the - in a subprogram command Then make
problem?* -in a REPEAT or IF the fix, and
- after a certain
command And decide
whether it's Re-test the
correct. program.

Figure 2: Step-by-step debugging procedure conveyed by
Carver and Risinger [8]

In summary, those findings show that conveying a systematic
debugging process seems particularly promising for improving stu-
dents’ debugging skills. However, teaching a systematic debugging
process hardly plays a role in the K12 classroom, where the un-
systematic teaching of debugging strategies or tools prevails [24].
Overall, an up-to-date and methodically sound study investigating
the effect of explicitly teaching a systematic process is lacking.

WiPSCE *19, October 23-25, 2019, Glasgow, Scotland

3 METHODOLOGY

3.1 Research Questions

The aim of this study is to investigate the influence of explicit
teaching of a systematic process to debugging in class.

Fostering self-reliance in debugging in particular seems to be an
important step towards enabling students to autonomously cope
with their errors. Therefore, we are interested in the students’ per-
ceived self-efficacy, as introduced by Bandura [5]. Ultimately, the
underlying goal of teaching debugging is to improve the actual
debugging performance, i.e. increase the numbers of errors fixed.

To this end, we will address the following research questions:

e (RQ1) Does teaching a systematic debugging process have
a positive effect on students’ debugging self-efficacy?

o (RQ2) Does teaching a systematic debugging process have
a positive effect on students’ debugging performance?

3.2 Study Design

To answer these research questions, we have chosen a pre-post-
control-group-test-design. First, the intervention was piloted with-
out a control group in a year ten (ages 15 to 16) class for particularly
high performing students (n = 14, using Greenfoot and Stride in
the classroom) to make adjustments based on the findings of this
implementation. Results from such a study without a control group,
however, help us to answer the research questions only to a limited
extent since possible increases in self-efficacy expectations and stu-
dent performance could also be attributed to the additional exercise
in debugging. In order to investigate the influence of the interven-
tion in contrast to pure debugging practice, e.g. through debugging
tasks, we used two year ten classes, the first as an experimental
(n = 13), the second as a control group (n = 15). We intentionally
selected two classes that were taught by the same teacher with an
identical teaching concept (using Blue] and Java), and were equally
advanced in the curriculum at the time of our study.

Each 90-minute lesson — led by the first author - consisted of a
pre-test, an intervention of about 10 minutes (except for the control
group) and a post-test. As shown in figure 3, the pre- and post-tests
were divided into a questionnaire to assess self-efficacy expectations
(four items with a five-level Likert scale) and the solvability of the
tasks (only in the post-test) as well as debugging tasks to assess
the students’ performance. Regarding the latter, the number of
corrected errors (analogous to [12]) was used as measurement. For
this, both the worksheets, on which errors and their corrections
had to be noted by all groups, and the code were evaluated.

3.3 Intervention

The intervention provides a systematic process to finding and fixing
errors, according to the causal reasoning of the “scientific method”
[36]: based on the observed behavior of the program, repeated hy-
potheses are formulated, verified in experiments and, if necessary,
refined until the cause is found. We use a didactically adapted vari-
ant of this procedure and explicitly distinguish between different
error types — compile time, runtime and logical errors (see figure 4)
- and reflect on the hierarchy in fixing these errors, as the debug-
ging process varies greatly depending on the underlying error type.
The undoing of changes is emphasized if troubleshooting measures

WiPSCE *19, October 23-25, 2019, Glasgow, Scotland

Pre-test

AN

Experimental

Tilman Michaeli and Ralf Romeike

Post-test

AN

. . Debugging . Debugging . .

. . . Debugging Debugging . .
Control group: A Questionnaire
/ /

N

Pre-test

N

Post-test

Figure 3: Study design

are not successful - especially since this procedure is unnatural for
students [30]. This is to prevent students from incorporating addi-
tional bugs during failed troubleshooting - a typical phenomenon
for novice programmers [15].

Carrying out the intervention, the systematic debugging process
was presented on a poster (see figure 4), discussed with the students
and stepped through for an example. The poster was displayed in
the classroom for the remaining lesson. In the post test, the material
for the experimental and pilot group reminded the students to apply
the previously conveyed approach.

3.4 Debugging exercises

The challenge in this study was to measure the actual debugging
performance. Debugging exercises are typically used to practice
and assess debugging. However, these confront students with a
large amount of foreign code. Katz and Anderson [19] found that
the procedure for debugging your own programs differs from that
of other programs. Furthermore, understanding and getting used
to foreign code is a big challenge for novices, as competencies such
as program comprehension and tracing are paramount, as Allwood
points out [2]. In order to approach the actual goal, improving the
debugging of own programs and investigating of distinct debugging
skills we therefore use several prototypes of a program that build
on each other. In this way, the students in each new prototype are
confronted with comparatively little “foreign” code and are already
familiar with the “old” code. For example, in the first prototype
of the pong game used in the pilot group only the movement of
the ball is implemented, and in the next one, the clubs and their
controls are additionally inserted.

Since the debugging and not the test skills of the students were
to be examined, the number of errors per prototype was given. For
the same reason, care was taken to ensure that the malfunction of
the program was quickly apparent so that the error localization
could be started directly. Le., there was no need to design edge
cases or malformed input to be able to observe erroneous program

behavior. The bugs encountered were common syntactical (e. g.
missing braces or data types), run-time (e. g. missing initialization
that leads to run-time exceptions) as well as logical errors (e. g.
missing method calls or interchanged movement directions).

4 RESULTS

4.1 (RQ1) Does teaching a systematic
debugging process have a positive effect on
students’ debugging self-efficacy?

First we examined the change of self-efficacy expectations for the
pilot, experimental and control groups, both pre and post, which
results from the mean value of the four items assessed in the re-
spective questionnaires. The answers of the five-level Likert scale
were mapped on a scale of 0 (do not agree) to 4 (agree). The mean
values therefore range between 0 and 4.

We determined whether there is a significant change of self-
efficacy expectations between pre- and post-test within the individ-
ual groups. Due to the sample sizes, we always used non-parametric
methods for testing significance [29]. Using the Wilcoxon signed-
rank test — a non-parametric test for dependent samples — we
analyzed the rankings in pre- and post-tests. In table 1 the respec-
tive medians and the p-value of the Wilcoxon signed-rank test (Hp:

no or negative test effect) are shown 1.

Median pre Median post Wilcoxon test

Pilot group 2.75 3.25 p = 0.044*
Control group 2.25 2.50 p =0.083
Experimental group 2.25 2.75 p=0.001"

Table 1: Influence on self-efficacy expectations

!Significant test results at a significance level of a = 0.05 are marked by a *.

Improving Debugging Skills in the Classroom

Debugging made easy

Compile Adjust your

Is the program compiling successfully? program
compile-time errors

S

Read and under-
stand the error message

Ad/usr your

program
Run
Does the program run w«rhout errors?

Determine the error
<ﬁ and find the relevant
runtime errors /ines of code

"What's the cause?"
Modify your assumption
or make a new one

Read and understand
the first error message

Ad/usr your
program

Compare
Do expected and actual behavior match?
l logical errors

Determine the error
"Why is this the case?"
Modifiy your assumption
or make a new one

and find the relevant
lines of code

manmichael@fau.de
ddi.c

Figure 4: Systematic debugging process conveyed in the in-
tervention

We see an increase in self-efficacy expectations in all three
groups. However, this is only significant for the pilot and experi-
mental groups at a significance level of & = 0.05. The effect sizes
according to Cohen are d = 0.56 (pilot) and d = 0.54 (experimental),
which corresponds to a medium effect [10].

Although active debugging improves self-efficacy expectations, a
systematic process seems to have a stronger impact on self-efficacy
expectations.

4.2 (RQ2) Does teaching a systematic
debugging process have a positive effect on
the debugging performance of the
students?

For differences in debugging performance, we compared the per-
formances of the experimental and control groups in pre- and post-
tests. Debugging performance is measured by the number of bugs
fixed. A pre-post comparison of the debugging performance within
the individual groups — as it was done for RQ1I - is not applicable,
since different errors had to be corrected in pre- and post-test.

WiPSCE *19, October 23-25, 2019, Glasgow, Scotland

To determine the effect of the intervention, we have to com-
pare the students’ debugging performance pre and post. Therefore,
we had to examine whether the two samples came from the same
population at both points of time. We can only assume a signif-
icant increase between the groups’ performance when they are
from the same population pre, but not post. Here, too, we used a
non-parametric test, the Mann-Whitney-U-test. In contrast to the
Wilcoxon signed-rank test, this test is designed for independent
samples. The p values of the Mann-Whitney-U test (Hp: samples
come from the same population) are shown in table 2.

Mann-Whitney-U-Test

Experimental vs. control group Pre p =0.191
Experimental vs. control group Post p = 0.049*

Table 2: Influence on debugging performance

Accordingly, we cannot reject the null hypothesis for compar-
ing pre-tests at a significance level of @ = 0.05: The debugging
performance of the students did not differ significantly before the
intervention. In contrast, there is a significant difference in the
post-test: The students in the experimental group had a higher
debugging performance (median = 4, with a total of 9 errors to be
corrected) than the students in the control group (median = 2). In
the post-test, tasks with a higher degree of difficulty were used
to determine the debugging performance, since a learning effect
between the pre- and post-test can be assumed in both groups. The
effect size according to Cohen is d = 0.69 and corresponds to a
medium effect [10].

The higher debugging performance is also reflected in the per-
ceived difficulty of the tasks by the students. This was determined
ex post in the questionnaire using a five-level Likert scale. Using
the same scale as before, 0 (do not agree) to 4 (agree), results in the
following mean values:

Tasks Pre Tasks Post

Control group 3.07 1.47
Experimental group 3.23 2.92

Table 3: Mean values for “The tasks could be easily solved”

The results suggest that a systematic process can make the dif-
ference: if students are given such a systematic process, they can
significantly improve their success in localizing and correcting
errors.

5 DISCUSSION

The aim of this intervention study was to examine the influence
of explicit teaching of a systematic process to debugging and its
influence on students’ self-efficacy and debugging performance.

In line with the conclusions that McCauley et al. [23] draw from
their extensive literature review, the intervention focuses on com-
petencies involved in pursuing a systematic approach to debugging.
This involves competencies such as reasoning about the program

WiPSCE *19, October 23-25, 2019, Glasgow, Scotland

based on (erroneous) output and formulating and modifying hypothe-
ses.

Because this intervention covers findings from further research
regarding novice programmers such as getting stuck [12] or the
tendency to introduce new bugs [15], this intervention goes beyond
similar studies discussed in the section on related work. Further-
more, in contrast to studies that predominantly focus on programs
that already compile (c.f. [6]) in university settings, we take dif-
ferent error types into consideration. This seems important, as for
example especially compile-time errors pose a big hurdle in the K12
classroom [24].

A typical phenomenon in the K12 classroom is the teacher hur-
rying from one student to the other (c.f. [24]), explaining errors
and giving hints for troubleshooting. Especially since the concept
of “learned helplessness” [28] might play a role in this [24], foster-
ing students’ debugging self-efficacy and eventually self-reliance
is essential. Our approach is designed to foster the self-reliance of
students in debugging by giving explicit instructions on what to do
if they encounter errors. Additionally, our goal was to tackle the
trial-and-error approach, which is common especially for “weaker”
students [25], by fostering a planned and deliberate process by call-
ing for them to explicitly formulate hypotheses. Our results support
that these goals have been met.

Although we have deliberately chosen a classroom setting over a
lab setting for our study and, therefore, have no data regarding the
students’ actual debugging process and possible changes after the
intervention, our results and the unstructured observations from
the classrooms show, that indeed, students successfully applied
a systematic approach that eventually lead to a increase in self-
efficacy and a higher debugging performance.

During our intervention, we observed that the students were not
aware of the existence of different classes of errors, despite already
having been confronted with them on a regular basis. Only explicit
reflection on the errors they encountered within our intervention
made the students realize the differences in how they came into
contact with them, which information the IDE provided, and how
they dealt with the different errors.

We have tested our systematic process with both Java and Blue]
(experimental and control group) as well as with Stride and Green-
foot (pilot). The positive results in both cases indicate that this
approach is independent of tools and (text-based) programming
languages (in contrary to e.g. [8]). This makes it suitable for the
classroom, where a great heterogeneity in the tools and languages
used prevails.

What significance do these results have for computer science
teaching? According to [24], computer science teachers lack suit-
able concepts for teaching debugging: although some unsystematic
debugging strategies, as well as the use of tools like the debugger,
are occasionally the subject of teaching, the teaching of a systematic
procedure has hardly played a role so far. This study underlines
how important it is to convey such a systematic debugging process
and offers an hands-on approach for the classroom.

5.1 Threats to Validity

A possible limitation of the validity of this study is the small sample
size and the lack of randomization of students. They were taught

Tilman Michaeli and Ralf Romeike

by the same teacher according to the same concept and also came
from the same school. This could limit the significance of the results
when generalizing to the population as a whole. We therefore plan
to extend this study to a larger sample.

6 CONCLUSION

In this study, we examined the influence of the explicit teaching
of a systematic debugging process regarding the influence on stu-
dents’ self-efficacy and debugging performance. To this end, we
developed an intervention, piloted it and then examined it in a
pre-post-control-group-test-design: Both the experimental and con-
trol group were surveyed by a questionnaire and given debugging
exercises as a pre-test. Afterwards, in the experimental group, the
intervention was carried out while the control group continued to
work on debugging exercises. As post-test, the students once more
worked on debugging exercises and were surveyed.

Our data shows that such an intervention is a promising ap-

proach to teaching debugging skills:

e The teaching of a systematic process for finding and cor-
recting programming errors has a positive impact on de-
bugging self-efficacy.

o Students who have been taught a systematic process also
perform better in debugging than students who have prac-
ticed debugging exclusively.

The presented intervention represents a first building block for
the promotion of debugging skills. This should be extended by
teaching concrete debugging strategies, the usage of debugging
tools and building up heuristics and patterns. In summary, our study
provides empirical arguments for explicitly teaching debugging and
simultaneously offers an hands-on approach for the classroom.

REFERENCES

[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of
patterns of debugging among novice Computer Science students. Proceedings
of the 10th annual SIGCSE conference on Innovation and Technology in Computer
Science Education (ITiCSE *05) 37, 3 (2005), 84-88.

[2] Carl Martin Allwood and Carl-Gustav Bjérhag. 1990. Novices’ debugging when
programming in Pascal. International Journal of Man-Machine Studies 33, 6 (1990),
707-1724.

[3] Carl Martin Allwood and Carl-Gustav Bjoérhag. 1991. Training of Pascal novices’
error handling ability. Acta Psychologica 78, 1-3 (1991), 137-150.

[4] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. ACM, New York,
NY, USA, 522-527.

[5] Albert Bandura. 1982. Self-efficacy mechanism in human agency. American
psychologist 37, 2 (1982), 122.

[6] Axel Béttcher, Veronika Thurner, Kathrin Schlierkamp, and Daniela Zehetmeier.
2016. Debugging students’ debugging process. In 2016 IEEE Frontiers in Education
Conference (FIE). IEEE, Erie, PA, USA, 1-7.

[7] Neil CC Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
The resurgence of computer science in UK schools. ACM Transactions on Com-
puting Education (TOCE) 14, 2 (2014), 9.

[8] McCoy Sharon Carver and Sally Clarke Risinger. 1987. Improving children’s
debugging skills. In Empirical studies of programmers: Second workshop. Ablex
Publishing Corp., Norwood, NJ, USA, 147-171.

[9] Ryan Chmiel and Michael C Loui. 2004. Debugging: from Novice to Expert.
Proceedings of the 35th SIGCSE technical symposium on Computer science education
- SIGCSE 04 36, 1 (2004), 17.

[10] Jacob Cohen. 1988. Statistical power analysis for the behavioural sciences. Hillsdale,
NJ: erlbaum, New York, NY, USA.

Mireille Ducasse and A-M Emde. 1988. A review of automated debugging systems:
knowledge, strategies and techniques. In Proceedings of the 10th international
conference on Software engineering. IEEE Computer Society Press, Piscataway,
NJ, USA, 162-171.

[11

Improving Debugging Skills in the Classroom WiPSCE *19, October 23-25, 2019, Glasgow, Scotland

[12] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2(2008), 93-116.

[13] David J Gilmore. 1991. Models of debugging. Acta psychologica 78, 1-3 (1991),
151-172.

[14] John D. Gould. 1975. Some psychological evidence on how people debug com-
puter programs. International Journal of Man-Machine Studies 7, 2 (1975), 151—
182.

[15] Leo Gugerty and G. Olson. 1986. Debugging by skilled and novice programmers.
ACM SIGCHI Bulletin 17, 4 (1986), 171-174.

[16] Morgan Hall, Keri Laughter, Jessica Brown, Chelynn Day, Christopher Thatcher,
and Renee Bryce. 2012. An empirical study of programming bugs in CS1, CS2,
and CS3 homework submissions. Journal of Computing Sciences in Colleges 28, 2
(2012), 87-94.

[17] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science
students. ACM SIGCSE Bulletin 35, 1 (2003), 153-156.

[18] W Lewis Johnson, Elliot Soloway, Benjamin Cutler, and Steven Draper. 1983. Bug
catalogue: I Yale University Press, New Haven, CT, USA.

[19] Irvin R. Katz and John R. Anderson. 1987. Debugging: An Analysis of Bug-
Location Strategies. Human-Computer Interaction 3, 4 (1987), 351-399.

[20] Claudius M Kessler and John R Anderson. 1986. A model of novice debugging in
LISP. In Proceedings of the First Workshop on Empirical Studies of Programmers.
Ablex Publishing Corp., Norwood, NJ, USA, 198-212.

[21] Andrew] Ko and Brad A Myers. 2005. A framework and methodology for
studying the causes of software errors in programming systems. Journal of
Visual Languages & Computing 16, 1-2 (2005), 41-84.

[22] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. A study of
the difficulties of novice programmers. Acm Sigcse Bulletin 37, 3 (2005), 14-18.

[23] Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67-92.

[24] Tilman Michaeli and Ralf Romeike. 2019. Current Status and Perspectives of
Debugging in the K12 Classroom: A Qualitative Study. In 2019 IEEE Global
Engineering Education Conference (EDUCON). IEEE, Dubai, VAE, 1030-1038.

[25] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky-a
qualitative analysis of novices’ strategies. In ACM SIGCSE Bulletin. ACM, Port-
land, OR, USA, 163-167.

[26] David N Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Sim-
mons. 1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research 2, 1 (1986), 37-55.

[27] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
2017. Studying the advancement in debugging practice of professional software
developers. Software Quality Journal 25, 1 (2017), 83-110.

[28] Christopher Peterson, Steven F Maier, and Martin E P Seligman. 1993. Learned
helplessness: A theory for the age of personal control. Oxford University Press,
New York, NY, USA.

[29] Bjorn Rasch, Malte Friese, Wilhelm Hofmann, and Ewald Naumann. 2010. Quan-
titative Methoden 2: Einfithrung in die Statistik fir Psychologen und Sozialwis-
senschaftler (3., erweiterte Auflage). (2010).

[30] Beth Simon, Dennis Bouvier, Tzu-yi Chen, Gary Lewandowski, Robert Mccartney,
and Kate Sanders. 2008. Common sense computing (episode 4): debugging.
Computer Science Education 18, 2 (2008), 117-133.

[31] Diomidis Spinellis. 2018. Modern debugging: the art of finding a needle in a
haystack. Commun. ACM 61, 11 (2018), 124-134.

[32] James C Spohrer and Elliot Soloway. 1986. Novice mistakes: Are the folk wisdoms
correct? Commun. ACM 29, 7 (1986), 624—632.

[33] James G Spohrer and Elliot Soloway. 1986. Analyzing the high frequency bugs
in novice programs. In Papers presented at the first workshop on empirical studies
of programmers on Empirical studies of programmers. Ablex Publishing Corp.,
Norwood, NJ, USA, 230-251.

[34] Iris Vessey. 1985. Expertise in Debugging Computer Programs: Situation-Based
versus Model-Based Problem Solving. International Conference on Information
Systems (ICIS) 18 (1985), 18.

[35] Aman Yadav, Ninger Zhou, Chris Mayfield, Susanne Hambrusch, and John T Korb.
2011. Introducing Computational Thinking in Education Courses. In Proceedings
of the 42Nd ACM Technical Symposium on Computer Science Education (SIGCSE
’11). ACM, New York, NY, USA, 465-470.

[36] Andreas Zeller. 2009. Why programs fail: a guide to systematic debugging. Morgan
Kaufmann, Burlington, MA, USA.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Debugging skills
	2.2 Error Types
	2.3 Teaching Debugging

	3 Methodology
	3.1 Research Questions
	3.2 Study Design
	3.3 Intervention
	3.4 Debugging exercises

	4 Results
	4.1 (RQ1) Does teaching a systematic debugging process have a positive effect on students' debugging self-efficacy?
	4.2 (RQ2) Does teaching a systematic debugging process have a positive effect on the debugging performance of the students?

	5 Discussion
	5.1 Threats to Validity

	6 conclusion
	References

