
Current Status and Perspectives of Debugging

in the K12 Classroom: A Qualitative Study

Tilman Michaeli

Friedrich-Alexander-Universität Erlangen-Nürnberg

Erlangen, Germany

tilman.michaeli@fau.de

Ralf Romeike

Freie Universität Berlin

Berlin, Germany

ralf.romeike@fu-berlin.de

Abstract – Self-reliance in debugging is both an important skill

and a major challenge in learning to program. Debugging is

distinct from general programming skills and needs to be

taught explicitly. Nevertheless, when it comes to teaching and

learning debugging, there are surprisingly few studies and

results. The aim of this qualitative study is to investigate how

students and teachers cope with errors in the K12 classroom,

which debugging skills are conveyed, and why teachers teach

or do not teach certain debugging skills. Therefore, in a first

step, we identify skills considered relevant for debugging by

applying desk research. We particularly focus on skills

considered relevant for novices. Building upon this, we analyze

12 interviews of German high-school teachers using structured

qualitative content analysis. The results show that especially

weaker students are often helpless and apply a trial-and-error

approach for coping with programming errors. It turns out

that compile-time errors pose a big hurdle for many students.

Teachers are mostly rushing from one student PC to the other,

trying to help. Regarding the teaching of debugging skills,

teachers focus on heuristics for common bugs as well as some

debugging strategies. No systematic process on how to tackle

and cope with errors is conveyed by teachers. Furthermore,

they do not employ explicit teaching lessons on debugging.

Overall, teachers lack a systematic approach for teaching

debugging, as there are only insufficient concepts and

materials.

Keywords—debugging, K12, computer science education,

qualitative content analysis, teacher perspectives

I. INTRODUCTION

Learning to program requires a variety of competences
and poses a major challenge in computer science education.
Students do not only need to grasp certain programming
concepts, but they also need to persevere and find solutions
in the case of errors. Systematically checking programs for
errors, finding and fixing them is an essential competence for
professional developers, who spend 20 to 40 percent of their
working time on it [1]. Ultimately, a high degree of
debugging knowledge leads to the acquisition of a systematic
and planned troubleshooting-approach instead of trial-and-
error [2]. On the other hand, it is well known, that
programming novices have major problems dealing with
errors. This poses a significant obstacle when learning to
code. Furthermore, debugging is an approach discussed in
the context of computational thinking [3]. Accordingly,
debugging has been considered increasingly important in
recent curricula such as the British computing curriculum. In
Germany, where this study is situated, few computer science
curricula explicitly include the term “debugging”, while
almost all contain the skill of “finding and fixing errors”.

However, there is a lack of approaches, teaching
materials and studies on how to teach and integrate
debugging concepts effectively into K12 classrooms. To

eventually develop suitable approaches, best practices, and
materials for the classroom, we have to incorporate teachers’
existing experience as well as their personal perspectives
towards debugging. As teachers are confronted with
students’ programming errors on an everyday basis, we want
to investigate their approaches and best practices.

To this end, the aim of this qualitative study is to
investigate how students and teachers cope with errors in the
classroom, which debugging skills are conveyed, and why
teachers teach or do not teach certain debugging skills.
Accordingly, we first need to identify the skills considered
relevant for debugging. Building upon this, we can analyze
which concepts and strategies for dealing with errors are
applied and/or conveyed in the classroom.

Therefore, the following research questions are
addressed:

• (RQ0) Which skills are considered relevant for
debugging in literature? Which skills are considered
relevant for novices?

• (RQ1) How do teachers and students cope with
programming errors in the classroom?

• (RQ2) Which skills regarding debugging are taught
in classrooms? When and how is debugging taught?

• (RQ3) What is the motivation of teachers to (not)
teach debugging skills?

The paper is structured as follows: In section 2, related
research work regarding relevant debugging skills and
approaches to debugging in the classroom is discussed. In
section 3, we outline the methodology of our study, which
consists of two parts: desk research is used to address RQ0.
Building upon this, a category system is developed and
constitutes the basis for the analysis of how students and
teachers cope with errors in the K12 classroom (RQ1), which
debugging skills are conveyed (RQ2), and why teachers
teach or do not teach certain debugging skills (RQ3) by
applying a structured qualitative content analysis. This
section is followed by the presentation of our results for both
the desk research and the qualitative study in section 4. In
section 5, the results are discussed and in section 6, we
present our conclusions.

II. RELATED WORK AND THEORETICAL BACKGROUND

A. Skills that help with Debugging

Debugging is the process of finding and fixing errors.
Debugging skills are distinct from general programming
skills, as [5], [6] or [8] show. They find that, while good
debuggers are typically good programmers, persons with
high proficiency in programming are not necessarily

proficient debuggers. However, high proficiency in
debugging is a necessity for becoming a good software
developer [1]. This leads to the question: what constitutes a
good debugger?

Ducasse and Emde [7] give a classification of knowledge
needed for debugging. Their results are based on an analysis
of automatic debugging systems. They conclude that except
for knowledge about the actual and intended program, the
programming language and general programming expertise,
knowledge about bugs and debugging techniques is
necessary. However, not all types of knowledge are required
in every debugging situation. These findings are confirmed
by Ahmadzadeh [8].

One approach to analyze relevant debugging skills is to
study and compare debugging experts and novices: Vessey
[9], Gugerty and Olson [10], and Nanja and Cook [11]
examine those differences by observing the debugging
behavior of students or professionals. Among the main
results are differences in program comprehension and
understanding: experts are significantly faster in getting an
overview over the program. Furthermore, experts formulate
better hypotheses and are more flexible in their overall
approaches and strategies. Novices use similar strategies but
apply them inefficiently. However, all studies observe the
debugging performance for given – and therefore foreign –
code. Accordingly, comprehension poses a far more
important part of the debugging process. Allwood [12]
emphasizes the difference between debugging one’s own
programs and debugging other people’s programs. Katz and
Anderson [13] also show that the employed strategies vary
based on whether the debugger is also the author of the code,
or not. Fitzgerald et al. [6] investigate novices and find that
the efficiency of applying debugging strategies, e.g. where
printf-statements are placed and what they print, is crucial to
debugging performance and distinguishes strong debuggers
from weak ones. This is also reflected by McCauley et al. [4]
in their extensive review of literature up to 2008.

The debugging process varies significantly depending on
the type of the underlying error, in particular, due to the
difference in available information. There is a large number
of categorizations for error types (see e.g. [14], [15], [16],
[17]). Typical distinctions are syntactic (mistakes in spelling
or punctuation), semantic (mistakes regarding the meaning of
the code) and logical errors (arising from a wrong approach
or a misinterpreted specification), construct-related (in the
sense of programming language specific constructs) and non-
construct-related errors, or the distinction between compile-
time and runtime errors.

Regarding error frequency for novices, it is hard to make
quantitative statements, as studies either focus on only some
specific error types (such as errors detectable by the
compiler), lack an appropriate sample size or analyze only
the final state of the programs (and no interim versions). Hall
et al. [18] find that logical errors are most common, although
their findings are based on a limited data set. Spohrer and
Soloway [19] also state that non-construct-related errors are
made much more frequently than construct-related errors,
contrary to popular belief. Altadmri and Brown give an
overview of bugs commonly encountered by novices, based
on the analysis of the BlueJ-Blackbox data set. They
conclude, that semantic errors are made more often than
syntax errors, at least after a certain level of programming
proficiency has been reached [20]. Regarding error severity –

measured by the time needed to fix a specific error – syntax
errors are fixed very quickly. Students find it harder to find
errors not identified by the compiler. These errors take
significantly longer to be found and fixed [20] [6].

B. Teaching Debugging

Murphy et al. [21], like Kessler and Anderson [22], argue
that debugging techniques such as testing and tracing should
be taught, as well as heuristics and patterns that help to apply
these techniques. Nevertheless, when it comes to teaching
debugging, there are surprisingly few studies and results; this
is true in both academic (university) settings and K12:

1) University Settings
Katz and Anderson [13] trained students to use different

debugging approaches (forward-reasoning, backward-
reasoning) for debugging LISP programs. Student groups
were first guided to use one of these approaches. Afterward,
they were free to use whichever strategy meets their needs. In
the end, the subjects continued to predominantly use the
approach in which they were trained. Otherwise, hardly any
differences were found between the approaches.

Allwood and Björhag [23] provided written debugging
hints to an experimental group of undergraduate students.
While the number of bugs did not differ between
experimental and control group, the number of eliminated
bugs (especially semantic and logical) was significantly
higher. No difference was found in the strategies students
tended to employ; this led to the conclusion that the
differences must lie on a higher level: whether the approach
was systematic, or not.

Chmiel and Loui [24] developed activities for a
university course to foster the debugging skills of students.
The activities were carried out – partly on a voluntary basis
(debugging tasks, debugging diaries), partly mandatory
(development diaries) – over the course of a semester. As the
semester progressed, students that completed the voluntary
debugging tasks needed significantly less time to debug their
programs. However, this correlation was not reflected in the
final exam results. Contrary to the expectation, the results
were only slightly better.

Böttcher et al. [25] trained the debugging skills of
students by introducing a systematic debugging approach, as
well as the use of the debugger, in an explicit teaching
lesson. The Wolf Fence algorithm (binary search) is used as
an analogy and conveyed through written instructions. The
lecturer made the debugging procedure explicit in a live
coding demonstration, while a lab exercise included
debugging tasks. The evaluation showed that only a few
students implemented the binary search as demanded, and
quickly returned to an unsystematic “poking around” and
“visual diagnosis” behavior.

2) K12 Settings
Carver and Risinger [2] conveyed a debugging process

with Logo, yielding promising results. They gave students
one hour of debugging training as part of a larger Logo
curriculum. It contained a flowchart characterizing the
debugging process, bug mappings and debugging “diaries”
that were always present in the classroom. Results (without
control group) showed a change from brute-force to a
focused-search approach when searching for bugs.
Furthermore, significantly less time was needed for finding
errors. The students formulated more hypotheses before

trying out the code, paid more attention to the control flow,
made fewer code changes (especially in bug-free places) and
produced a lower number of new bugs.

In conclusion, we find that debugging skills are distinct
from general programming skills. One approach to
investigate skills that are considered relevant for debugging
is the comparison of novices and experts. With regard to
explicit teaching of debugging, there are unexpectedly few
studies. Nevertheless, they provide a further source for
debugging skills considered relevant, as well as for insights
into experiences with the respective teaching approaches.

III. METHODOLOGY

The aim of this qualitative study is to investigate how
students and teachers cope with errors in the classroom,
which debugging skills are conveyed, and why teachers teach
or do not teach certain debugging skills. To this end, we first
need to identify the skills considered relevant for debugging.
Building upon this, we can analyze which concepts and
strategies for dealing with errors are applied and/or conveyed
in the classroom. Therefore, this study consists of two parts:
After identifying relevant debugging skills using desk
research (RQ0), the question of how and why they are
applied in the classroom is addressed using interview data
(RQ1-3).

A. Desk Research addressing RQ0

To address RQ0, desk research was carried out, which
resulted in skills considered relevant for debugging. For this
purpose, relevant libraries and journals (ACM Digital
Library, IEEE Digital Library, Google Scholar) were
systematically searched by examining the occurrences of
respective keywords (“debugging”, “debugging strategies”,
“debugging education”, “debugging competences”,
“debugging skills”) in documents. As a further selection
criterion, the documents had to have at least four pages. This
was accompanied by a thorough analysis of different
programming textbooks (student textbooks used in German
school curricula (10), standard textbooks (17) and books with
a focus on debugging (4)). The resulting documents were
analyzed for statements and results regarding the following
aspects:

1) What skills are applied by debugging experts and,
how do they differ from novices?

2) Which debugging skills are taught or considered
relevant?

Novices and experts must be considered separately.

Accordingly, in our analysis, we distinguish two groups of
skills: those considered relevant only for intermediates or
professional developers, and those relevant for programming
novices, particularly in K12 or entry-level university.

As discussed in section 2, debugging skills are
conceptually different from general programming skills.
Therefore, this analysis focuses particularly on debugging
skills – in contrast to skills considered general programming
skills. For that reason, we omitted such skills as program
comprehension and programming concept knowledge,
although they are evidently necessary requirements for the
debugging process.

B. Interview study addressing RQ1-3

For the analysis of how students and teachers cope with
errors in the classroom, which debugging skills are
conveyed, and why teachers teach or do not teach certain
debugging skills, we conducted semi-structured interviews
with twelve outstanding high school teachers from different
regions of Germany (leading to a wide range of different
requirements, curricula, etc.). Through the qualitative
examination of the teacher’s perspective, we can gain a
deeper insight into the teaching practice. Therefore, we can
not only investigate applied debugging skills but also
evaluate the experience teachers gathered in doing so as well
as their motivation.

In doing so, we want to determine best practices and
suitable approaches. Therefore, our sample group contains
only well-experienced teachers, that are either involved in
teacher training and/or have solid connections to universities.

Most of the teachers teach object-oriented programming
and almost exclusively use Java as their programming
language. Therefore, we only considered the teachers’
experience using text-based programming languages.

For the analysis of the data collected in interviews, we
applied a structured content analysis approach according to
Mayring [26]. The software MaxQDA was used for the
actual coding. We deductively developed a category system,
building upon the results of RQ0. To avoid neglecting
important aspects due to previously-defined categories,
inductive additions were allowed. The transcribed interviews
form the basis of the evaluation. The related text passages of
the interviews serve as units of analysis. By classifying text
passages, individual depictions are generalized across all
cases. As for intercoder reliability, a second researcher coded
the text snippets for two of the transcribed interviews (20
percent of the codings) as well.

IV. RESULTS

A. RQ0: Which skills are considered relevant for debugging

in literature? Which skills are considered relevant for

novices?

The desk research resulted in four debugging skills
considered relevant for novices, which will be explained in
the following.

1) Applying a systematic debugging process
A systematic debugging process – sometimes referred to

as “strategy” – is the high-level systematic pursuit of a plan
to find and correct errors. With respect to professionals, there
is a large number of debugging process models that share the
following common aspects (such as [13], [27], [9], [28], [29],
[30]):

• Testing and making the program fail

• Gaining an overview of the program (if necessary)

• Formulating a hypothesis

• Experimentally verifying the hypothesis

• If necessary, repeated refinement of the hypothesis

• Correcting the error

• Testing the program again

Zeller [28] labels this approach of generating and refining
hypotheses as scientific debugging – derived from the
scientific method – treating an error therefore as a “natural
phenomenon”. In a recent study on the status quo of
debugging in industry, all participating developers described
their debugging approach as being similar to the (simplified)
scientific method [1].

Adaptations for novices can be found (c.f. [2], [25], or
[31]). Overall, these adaptations simplify the process.
Therefore, they omit steps such as tracking the bug in a
database or adapting regression tests.

2) Applying debugging strategies
In contrast to a debugging process, debugging strategies –

sometimes referred to as “tactics” or “techniques” – are
lower level practices, supporting the steps of finding and
refining hypotheses. Examples are tracing the program flow
using printf-debugging or the debugger, slicing or forcing the
execution of a specific case. One of the key differences
separating experts from novices is the effectiveness
debugging strategies are applied with [4].

There is a wide variety of strategies, see for example
[30], [1], [32]. Murphy et al. [21] give an overview of
strategies commonly employed by novices. In entry-level
programming textbooks, strategies such as printf-debugging,
using the debugger, trace tables, and slicing can be found.

3) Applying heuristics and patterns for common bugs
Developers often apply a shortened version of the

systematic debugging process, including formulating and
testing hypotheses: From their experience, they know typical
errors and their possible causes. To support this “learning
from past errors”, many professional developers keep a
debugging diary or debugging log, which they use to
document their debugging experience. This process helps to
build a catalog of heuristics that supports the removal of
similar bugs in the future [1].

4) Usage of Tools
The use of professional debugging tools such as

automatic fault localization approaches and back-in-time-
debuggers strongly depends on the application domain.
Regarding tools considered relevant for programming
novices we only found the use of standard debuggers – which
falls into the category debugging strategy as well. In
addition, utilizing IDE feedback was sometimes mentioned.

Building upon these results, we deductively developed a
category system for the interview analysis (see Table I). The
first category addresses the teachers’ experiences regarding
their and students’ coping with programming errors in the
classroom, including common student errors and the teacher-
student interaction. The next category covers teachers’
statements about approaches to teaching debugging: which
debugging content (in the sense of the respective skills from
our desk research), and how and when it is taught. Within the
last category, teacher’s motivation regarding teaching
debugging is addressed.

B. RQ1: How do teachers and students cope with

programming errors in the classroom?

1) Students’ Reactions to Errors
Finding 1: Students’ reactions to errors vary depending

on the teacher.

The observations of the teachers regarding the students’
reactions to errors differ. Some teachers report that the
majority of the students report problems to the teacher
immediately. Others report that they first try to solve errors
on their own, or with their neighbor. Sometimes, however,
this behavior might merely be a result of the teachers’
unavailability, possibly because they are busy helping other
students:

“First of all, they have to try it on their own because most
of the time I am busy helping somewhere else.”

TABLE I. CATEGORY SYSTEM FOR STRUCTURED CONTENT ANALYSIS

Category Subcategory Exemplary Coding

Coping

with errors

in the
classroom

Information about

students’ reactions to
errors

The motivated and

enthusiastic students try to
eliminate errors on their own.

Information about

teachers’ reactions to
errors in student code

I notice when a student puts

up his hand. Then, I go there
and try to help him.

Characteristics of student-

teacher interaction

Students just say: “there was

an error message, I don't
know what it said”.

Information about

common student’s errors

Typical errors are, for

example, that they try to call

a method without creating
the respective object

beforehand.

Debugging

skills
taught in

the

classroom

Statements about

teaching a systematic

debugging process

No, I do not introduce

something like that.

Statements about

teaching debugging

strategies

Then I point out to them:
“just insert a line which

prints exactly what you want

to know”.

Statements about

teaching heuristics and

patterns for common

bugs

Then I try to explain where
the error typically comes

from.

Statements about

teaching the usage of

tools.

I introduce the debugger as a

tool.

Ways of teaching

debugging, such as on an
individual basis or in

explicit debugging

lessons

If it is a common error, then I

always address it in front of
the whole class, if it is an

individual problem, then only

with the respective student.

Statements regarding the
point of time when

debugging is taught, such

as at the beginning of the
course or on demand

Usually when we talk about

arrays, I introduce the

debugger.

Kinds of activities used

for teaching and
supporting debugging

I'm handing out erroneous

source code for practicing.

Motivation

of teachers
to (not)

teach

debugging

Statements about why

teachers include

debugging contents in

their teaching

In particular, the helplessness

and frustration of students.

Statements about why
teachers neglect

debugging contents in

their teaching

I just have to keep it short

because the curricular topics
have priority.

Statements of teachers as

to whether they refined

their teaching regarding
debugging over the

course of their

professional experience

What has developed over

time is my experience: Is this

really an individual problem,
or is it a problem that quite a

few students will struggle

with?

Finding 2: “Good” students have fewer problems with
debugging, while “weak” students are rather helpless.

If students try to fix errors on their own, teachers
distinguish two groups of students: “good” students who
need little help, and “weaker” students. The latter are
frequently overwhelmed and apply an unsystematic trial-and-
error approach. One teacher sums up his experience as
follows:

“Those who can program recognize the error

and fix it, and those who can’t program just

try something until the error message is gone

[...] they just keep adding int’s or semicolons

until this error message doesn’t occur

anymore.”

Finding 3: Compile-time errors pose a major hurdle for
students, even after some programming experience.

Furthermore, the teachers state that simple syntax errors
(such as missing semicolons or parentheses) are no longer a
problem after a few weeks. However, many teachers agree
that other types of compile-time errors remain a big problem.
When asked about logical errors, one teacher responds:

“In grade 10, it is less of a problem, because

most students don’t even succeed in making

their program run completely within the time

frame of a lesson.”

One teacher describes problems resulting from
ambiguous (Java-) error messages that appear in the wrong
place – at least from the student’s point of view.

“‘reached end of file while parsing’ or similar

error messages are not obvious for the

students, because the error message points to

a different location.”

Finding 4: Students ask unspecific questions.

Overall, students ask predominantly unspecific questions
when they eventually call the teacher for assistance.

“The majority of students look horrified, put

their hands up and say ‘that’s red, there’s a

mistake’, and expect the teacher to present the

solution to them”

2) Teachers’ Reactions:
Finding 5: Teachers are mostly rushing from one student

PC to the other, trying to help.

In general, teachers noticed a great amount of
helplessness and frustration when dealing with errors, so that
the teacher actually ends up rushing from one student PC to
the other, explaining the error and giving hints for
troubleshooting.

“With most error messages, when you enter

them in Google, you find the solution, but

relatively few dare or want to do that. They

always like to have the teacher next to them.”

Finding 6: When helping students individually, teachers
predominantly address underlying misconceptions.

In the small time frames allotted to each student, the
primary goal usually is to eliminate underlying
misconceptions.

“Depending on how much time you have for

the individual, you either really try to sit down

and tell them: ‘Read this, what does it mean?

What did you do differently when there was no

error?’ But if you have a lot of requests, [...]

then you quickly tell them ‘there’s a semicolon

missing’, ‘there’s a small s’, or ’you forgot the

new’.”

Finding 7: There are some teachers that demand a great
deal of autonomy in handling errors.

This does not apply to all teachers, however: there is a
small number of teachers who follow the described approach
only in the first few weeks and then demand independent
thinking and research from the students. In these cases,
before the teacher may be called for help, students are
expected to make autonomous attempts at solving errors and
consult classmates first. One teacher, for example, stated that
one of his key principles is that each error message will be
explained to the class only once:

“Such error messages are addressed once for

all students, but only once. They know that

each error message may be asked once,

afterward I tell them ‘no, we already had that,

either you have noted it down or you to

remember it, or someone in the group knows

it, it is no longer my concern’, I am persistent

in that.”

“Otherwise, I would be the replacement for

the compiler, always saying, ‘remember, there

is a semicolon missing’. Then they wouldn’t

even dare to press compile. No, they just have

to learn how to deal with the errors.”

Finding 8: Teachers that demand autonomy report a
better handling with errors and fewer problems with compile-
time errors.

Interestingly enough, teachers following this course of
instruction also tend to see compile-time errors as a lesser
hurdle.

“The syntax things are overcome routinely

and relatively quickly.”

One teacher reports more self-reliance, more specific
questions, and overall better handling of errors compared to
his teaching before employing this demanding-self-reliance
approach.

“I was used to experiencing this situation

quite often, ‘yes there was an error message’,

‘what did it say?’, ‘I don’t know, I got rid of

it. The most important thing about the error

message was the red cross at the top right,

close it, get rid of it, and then call the

teacher.”

C. RQ2: Which skills regarding debugging are taught in

classrooms? When and how is debugging taught?

1) Skills taught in the Classroom
Finding 9: Teachers convey no systematic debugging

process.

With regard to skills taught, the teachers reported a lack
of systematic approaches. Evidently, the skills addressed
strongly depend on the programming environments and
languages used in class. None of the teachers teaches any
kind of debugging model process that goes beyond “first of
all, read the error message”.

Finding 10: A variety of unsystematic debugging
strategies are taught.

The majority of teachers gives at least one debugging
strategy to the students, but – with some exceptions – these
strategies are not systematically taught or practiced. A focus
seems to be on tracing strategies. Therefore, the usage of the
debugger, printf-debugging, or the use of other tool-specific
features that help with tracing – see finding 12 – were among
the most frequently-named strategies. Furthermore, internet
research for the handling of error messages, commenting-out,
basic slicing, and testing (especially testing by visual
observation) were sometimes mentioned.

Finding 11: Teachers focus on heuristic and patterns
for common bugs.

Nevertheless, the teachers’ main focus is placed on the
explanation of error messages and heuristics for dealing with
typical errors, especially for runtime and compile-time errors.

“I try to clarify where the error typically

occurs. Often the loop goes on for too long,

you made your array too small or forgot that

it starts at 0. Things like that.”

Finding 12: Usage of tools in the classroom is
dominated by the debugger and further tool-specific features
that help with tracing, although with mixed results.

Regarding the usage of tools, teachers report using the
debugger – although almost exclusively in a didactically-
reduced version (as found i.e. in BlueJ) – as well further tool-
specific features, like the object inspector in Greenfoot and
BlueJ. This object inspector enables displaying the values of
an object’s static and instance fields at any given time [33].

For the debugger teachers agree that it only seems to help
the “good” students. This is also reflected in its usage: they
are the only group that actively uses it.

“With the “good “students I also use the

debugger [...], but that strategy is less helpful

for the “weaker” students, [...] I notice that

they don’t have the courage to use it.”

One teacher reports that introducing the debugger did not
work out. Consequently, for them, it remained a one-time
experiment.

“I tried it once, [...] it required even more

effort and caused confusion.”

2) When Debugging is Taught
With regard to the point in time when debugging is

taught, we have distinguished between three procedures: at
the beginning of the course, after a certain level of
programming proficiency has been reached or on demand –
when respective skills are needed.

Finding 13: Attempting to build knowledge
predominantly in the beginning of the course does not benefit
the students

Some teachers reported putting measures into place to try
to prevent problems early on in the programming course.
These measures could include differentiation of various error
types, basic heuristics for the handling of specific errors (or
error messages), or the introduction of a tool-specific
debugger or object inspector. They reported, however, that
the content and scaffolding materials conveyed in previous
weeks saw little use, as one teacher states:

“The students think they understood it, and

then they never look at it again.”

Finding 14: Most debugging skills are taught on demand.

A common example for this is the introduction of arrays.
For this topic, the corresponding error messages (and their
typical causes) or strategies, such as usage of the debugger,
are commonly covered at two possible stages: during the
general introduction of the topic, or in response to the first
time an unauthorized access-to-memory error occurs.

“With arrays, this ArrayIndexOutOfBounds-

Exception, when it comes up for the first time,

I usually display the students’ screen on the

projector and tell them: ‘listen people, each of

you might encounter this error message in the

next few weeks, that could be the problem

behind it.”

3) How Debugging is Taught
Finding 15: Teachers tend not to employ explicit

teaching lessons on debugging, but instead teach the relevant
skills on an individual basis.

None of the teachers employ an explicit lesson aiming at
debugging, other than the introduction of the debugger. If
contents concern all students (e.g. the first occurrence of a
specific error, introduction to the debugger, ...), these are
addressed in front of the entire class. However, a large part of
the support provided to students is individual in nature. The
teachers also reported that learning occurred through
observation in these individual support phases, e.g. how to
use the strategy of commenting- out.

“It is often the case that I demonstrate it once.

So it is more like ‘learning by observation’

than ‘learning by instruction’.”

Concerning certain debugging-related activities, some of
the teachers mentioned using debugging tasks. Debugging
diaries or reviews have also been mentioned by a few
teachers.

D. RQ3: What is the motivation of teachers to (not) teach

debugging skills?

Finding 16: Teachers convey debugging skills mostly
due to their experience of students’ helplessness.

The primary reason given by teachers for the integration
of debugging contents and skills is the students’ perceived
helplessness in dealing with programming errors. Some of
the teachers reported a further development of their
debugging content adapted to the typical errors encountered
by students over the years. All teachers would like to
integrate more debugging-related topics into their teaching.

Finding 17: The main reported factors to not include
debugging in teaching are: lack of time, debugging not being
an explicit topic in the curriculum, and missing concepts and
materials.

Regarding the reasons why they do not teach more
debugging in class, the teachers mainly reported a lack of
time. This includes both lesson time and time for the
preparation and creation of suitable concepts.

Another reason given is that debugging is not an
explicitly-named content of the curriculum – despite it being
a central step in programming:

“In the curricula, it is not included as an

explicit topic, [...] and okay, I do

programming, what do I need for

programming, I need the programming

concepts, I need the data structures, so these

are topics which then end up in the lesson

plan, and debugging is more related to the

process, and therefore, seldom a subject of

teaching.”

Therefore, teachers often “neglect” debugging in favor of
content explicitly required by curricula. This may also cause
a lack of awareness of the subject area. Furthermore, they
argue that they do not know any adaptable concepts and
require an approach to conveying more content in a suitable
way. They claim that there is no material, not even in
textbooks for educational settings:

“You can find something about databases,

about programming, about all these fields of

computer science, but [debugging] is rarely a

topic on its own.”

Finding 18: An important source for teachers’ debugging
content knowledge is their own debugging behavior.

Four of the teachers explicitly stated that the strategies
and support they provide to students are based on their own
personal debugging behavior:

“I was considering, how did I do that back

then at university?”

V. DISCUSSION

This qualitative study was designed to investigate how
students and teachers cope with errors in the classroom,
which debugging skills are conveyed, and why teachers teach
or do not teach certain debugging skills. Therefore, in a first
step, relevant debugging skills were identified in desk

research. Building upon this, interview data were analyzed
with a structured qualitative content analysis.

By deliberately selecting teachers who either cooperate
with universities and current research or are involved in
teacher training, the aim was to collect best practices and
well suitable approaches. Therefore, these results are more
likely to be the upper limit of what is done regarding
debugging in classrooms.

Overall, our findings on relevant debugging skills in
literature matched the teachers’ statements on debugging
skills they convey: teachers focus on a variety of debugging
strategies (finding 10) as well as on heuristics for common
bugs (finding 11) and the usage of tools (finding 12).
However, this does not apply to the application of a
systematic debugging process (finding 9). Thus, no coding
could be assigned for this category, despite being an explicit
point of inquiry. Teachers presumably apply a systematic
approach when debugging. Possibly, this may only be a
subconscious process, since teachers themselves might have
learned to debug in an unstructured way – as most of
professional software developers have [1]. Therefore, they
might not consider such a systematic approach as content
relevant for fostering debugging. However, explicitly
teaching a systematic debugging process has promising
results [2]. The data further indicates, that educators teach
debugging strategies based on their own debugging behavior
(finding 18): A teacher who relies on the debugger to find
errors may predominantly teach proper debugger usage,
whereas a teacher who rely on working with printfs may
instead teach how to use those. This insight can be helpful in
teacher training: introducing a systematic approach to
debugging will potentially benefit future students.

Beside debugging expertise, general programming skills
are often a prerequisite for dealing with errors, as [7] and [8]
indicate. The teachers also emphasize that they want to
prevent errors by successfully conveying programming
concepts. This is in line with the implication for teaching and
learning debugging McCauley et al. [4] draw from their
literature review: combating misconceptions, as they pose a
major source of errors. Therefore, errors in the classroom not
only provide valuable learning opportunities for the students
but are also indicators for the teachers as to whether the
concepts have been successfully acquired. Potentially,
teaching and practicing debugging might even pose a
valuable opportunity to improve students’ general
programming skills: tracing and tracing strategies play an
important role not only in the debugging process [34], but
also for overall programming. By improving their tracing
skills, students improve their model of notional machine and
overall program understanding skills [35].

Another thesis that emerges from the data is that teachers
who demand a high degree of autonomy tend to see compile-
time errors as a lesser hurdle. They also observe more
autonomy in troubleshooting (finding 8). Therefore, it seems
promising to put a strong focus on self-reliance and
supporting it in materials and concepts. The concept of
”learned helplessness” [38] might play a role here, as there
are no notable differences in the type of debugging strategies
taught to students; however, it must be noted that two out of
these three teachers employ (agile) project-based learning
early on, which may have had a significant influence on their
epistemological approaches to teaching. Though, we cannot

investigate this thesis further with the given data, but it offers
an interesting perspective for future research.

The data further indicates, that compile-time errors
represent a major hurdle for many students (finding 3). In
order to appropriately address this hurdle, a systematic
approach to properly deal with error messages is required –
at least when teachers use traditional text-based
programming, and not block- or frame-based approaches,
where many of these errors are no longer possible [36]. For
this reason, related skills should also be incorporated into a
pedagogical approach. Merely relying on the conveyance of
strategies such as tracing is not sufficient. This perspective
differs from the predominant focus on debugging for already
compiling programs at university level. Some even define
debugging as starting at a runtime level [14]. One possible
explanation for this difference can be the limited teaching
time in the school: At the end of the lesson at the latest, the
students receive the solutions for the exercises, no matter
how many errors are still remaining in their program.
Therefore, the students do not form any heuristics and
experiences of how to deal with certain errors. At the same
time, it must be noted that educators assess the errors
frequently made by students poorly [37].

Regarding the teaching of debugging skills, teachers
confirm a lack of materials (finding 17). The primary target
group for interventions and materials are “average” to
“weak” students, “good” students also cope with the status
quo (finding 2, finding 12). The unsystematic trial-and-error
approach that teachers reported for those “weaker” students
is in line with literature [21].

VI. CONCLUSION

In summary, we found four primary debugging skills
considered relevant for novices in our analysis: the
application of a systematic high-level debugging process, the
application of low-level debugging strategies, the application
of heuristics and patterns for common errors, and the usage
of tools.

Regarding how teachers and students cope with errors in
the classroom, the teachers report that especially “weaker”
students are often overwhelmed and helpless when dealing
with errors. They often use a trial-and-error approach that is
not very effective and show little self-sufficiency. Teachers
often rush from one student PC to the other, trying to help
students troubleshoot. It turned out that compile-time errors
also pose a big hurdle for many students.

Concerning debugging skills conveyed in the K12
classroom, the results show that some strategies and
heuristics, but no debugging process models – and therefore
no systematic process on how to tackle and cope with errors
– are taught. Other than the introduction of the debugger,
none of the teachers employ an explicit lesson aiming at
debugging. Teachers lack a systematic approach to teaching
debugging: The data indicates that educators teach debugging
based on their own debugging process, which they
themselves have typically acquired in an unstructured way.

The main reason for teachers not to teach debugging
skills is a lack in time – in lessons as well as for the
preparation of suitable concepts and materials. Furthermore,
debugging not being an explicit content of the curriculum
and missing concepts and materials are reported by the
teachers.

To help us create concepts and materials for the
classroom, we can derive the following design principles
from our results: The concepts and materials should:

• primarily target “weak” to “average” students’
requirements,

• focus on self-reliance and supporting it,

• emphasize a high-level systematic debugging
process,

• include approaches for coping with compile-time
errors,

• and introduce debugging strategies (such as tracing
strategies) and tools systematically.

In summary, this study offers deep insights into the
current status of debugging in the K12 classroom and
supports building a valuable foundation for addressing the
lack of concepts and materials.

REFERENCES

[1] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, Studying
the advancement in debugging practice of professional software
developers, Softw. Qual. J., vol. 25, no. 1, pp. 83-110, 2017.

[2] M. S. Carver and S. C. Risinger, Improving childrens debugging
skills, in Empirical studies of programmers: Second workshop, 1987,
pp. 147-171.

[3] A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J. T. Korb,
“Introducing Computational Thinking in Education Courses,” in
Proceedings of the 42Nd ACM Technical Symposium on Computer
Science Education, 2011, pp. 465–470.

[4] R. McCauley et al., Debugging: a review of the literature from an
educational perspective, Computer Science Education, vol. 18, no. 2,
pp. 67-92, 2008.

[5] P. Romero, B. Du Boulay, R. Cox, R. Lutz, and S. Bryant, Debugging
strategies and tactics in a multi-representation software environment,
Int. J. Hum. Comput. Stud., vol. 65, no. 12, pp. 9921009, 2007.

[6] S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy, B. Simon, L.
Thomas and C. Zander, Debugging: finding, fixing and flailing, a
multi- institutional study of novice debuggers, Computer Science
Education, vol. 18, no. 2, pp. 93-116, 2008.

[7] M. Ducasse and A.-M. Emde, A review of automated debugging
systems: knowledge, strategies and techniques, in Proceedings of the
10th international conference on Software engineering, 1988, pp.
162-171.

[8] M. Ahmadzadeh, D. Elliman and C. Higgins, An analysis of patterns
of debugging among novice computer science students, ACM SIGCSE
Bulletin, vol. 37, no. 3, p. 84, 2005.

[9] I. Vessey, Expertise in Debugging Computer Programs: Situation-
Based versus Model-Based Problem Solving, Int. Conf. Inf. Syst., p.
18, 1985.

[10] L. Gugerty and G. Olson, Debugging by skilled and novice
programmers, ACM SIGCHI Bull., vol. 17, no. 4, pp. 171-174, 1986.

[11] M. Nanja and C. R. Cook, Empirical Studies of Programmers:
Second Workshop, G. M. Olson, S. Sheppard, and E. Soloway, Eds.
Norwood, NJ, USA: Ablex Publishing Corp., 1987, pp. 172-184.

[12] C. M. Allwood and C.-G. Björhag, Novices debugging when
programming in Pascal, Int. J. Man. Mach. Stud., vol. 33, no. 6, pp.
707-724, 1990.

[13] I. Katz and J. Anderson, Debugging: An Analysis of Bug-Location
Strategies, Human-Computer Interaction, vol. 3, no. 4, pp. 351-399,
1987.

[14] A. J. Ko and B. A. Myers, A framework and methodology for studying
the causes of software errors in programming systems, J. Vis. Lang.
Comput., vol. 16, no. 12, pp. 4184, 2005.

[15] M. Hristova, A. Misra, M. Rutter, R. Mercuri, and B. Mawr,
Identifying and Correcting Java Programming Errors for
Introductory Computer Science Students, 2003.

[16] W. L. Johnson, E. Soloway, B. Cutler, and S. Draper, Bug catalogue:
I. Yale University Press, 1983.

[17] J. G. Spohrer and E. Soloway, Analyzing the high frequency bugs in
novice programs, in Papers presented at the first workshop on
empirical studies of programmers on Empirical studies of
programmers, 1986, pp. 230251.

[18] M. Hall, K. Laughter, J. Brown, C. Day, C. Thatcher, and R. Bryce,
An empirical study of programming bugs in CS1, CS2, and CS3
homework submissions, J. Comput. Sci. Coll., vol. 28, no. 2, pp. 8794,
2012.

[19] J. C. Spohrer and E. Soloway, Novice mistakes: Are the folk wisdoms
correct?, Commun. ACM, vol. 29, no. 7, pp. 624632, 1986.

[20] A. Altadmri and N. C. C. Brown, 37 Million Compilations, Proc. 46th
ACM Tech. Symp. Comput. Sci. Educ. - SIGCSE 15, pp. 522527,
2015.

[21] L. Murphy, G. Lewandowski, R. McCauley, B. Simon, L. Thomas and
C. Zander, Debugging: the good, the bad, and the quirky a qualitative
analysis of novices strategies, ACM SIGCSE Bulletin, vol. 40, no. 1,
p. 163, 2008.

[22] C. M. Kessler and J. R. Anderson, A model of novice debugging in
LISP, in Proceedings of the First Workshop on Empirical Studies of
Programmers, 1986, pp. 198-212.

[23] C. Allwood and C. Björhag, Training of Pascal novices’ error
handling ability, Acta Psychologica, vol. 78, no. 1-3, pp. 137-150,
1991.

[24] R. Chmiel and M. C. Loui, Debugging: from Novice to Expert, Proc.
35th SIGCSE Tech. Symp. Comput. Sci. Educ. - SIGCSE 04, vol. 36,
no. 1, p. 17, 2004.

[25] A. Böttcher, V. Thurner, K. Schlierkamp, and D. Zehetmeier,
Debugging students debugging process, Proc. - Front. Educ. Conf.
FIE, vol. 2016Novem, 2016.

[26] P. Mayring, Qualitative content analysis: theoretical foundation,
basic procedures and software solution, 2014.

[27] J. D. Gould, Some psychological evidence on how people debug
computer programs, Int. J. Man. Mach. Stud., vol. 7, no. 2, pp. 151-
182, 1975.

[28] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
2005.

[29] D. J. Gilmore, Models of debugging, Acta Psychol. (Amst)., vol. 78,
no. 13, pp. 151172, 1991.

[30] D. Spenellis, Modern Debugging : The Art of Finding a Needle in a
Haystack, Commun. ACM, no. November 2018, pp. 124134, 2018.

[31] A. Sipitakiat and N. Nusen, Robo-Blocks: designing debugging
abilities in a tangible programming system for early primary school
children, Proc. 11th Int. Conf. Interact. Des. Child. - IDC 12, no.
December, p. 98, 2012.

[32] R. C. Metzger, Debugging by thinking: A multidisciplinary approach.
Digital Press, 2004.

[33] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The BlueJ
system and its pedagogy,” Comput. Sci. Educ., vol. 13, no. 4, pp. 249–
268, 2003.

[34] D. N. Perkins and F. Martin, “Fragile knowledge and neglected
strategies in novice programmers,” in first workshop on empirical
studies of programmers on Empirical studies of programmers, 1986,
pp. 213–229.

[35] A. Venables, G. Tan, and R. Lister, “A closer look at tracing,
explaining and code writing skills in the novice programmer,” Proc.
fifth Int. Work. Comput. Educ. Res. Work. - ICER ’09, no. 2008, p.
117, 2009.

[36] A. Altadmri, M. Kölling, and N. C. C. Brown, The Cost of Syntax and
How to Avoid It: Text versus Frame-Based Editing, Proc. - Int.
Comput. Softw. Appl. Conf., vol. 1, pp. 748753, 2016.

[37] N. C. C. Brown and A. Altadmri, Investigating novice programming
mistakes: Educator Beliefs vs. Student Data Proc. tenth Annu. Conf.
Int. Comput. Educ. Res. - ICER 14, pp. 4350, 2014.

[38] C. Peterson, S. F. Maier, and M. E. P. Seligman, Learned
helplessness: A theory for the age of personal control. Theory for the
Age of Personal, 1993.

