
Footer – Please leave the footer blank

Enabling collaboration and tinkering: a version
control system for block-based languages

Tilman Michaeli*, tilman.michaeli@fau.de
Friedrich-Alexander-Universität Erlangen-Nürnberg

Stefan Seegerer*, stefan.seegerer@fau.de
Friedrich-Alexander-Universität Erlangen-Nürnberg

Ralf Romeike, ralf.romeike@fau.de
Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

Version control systems are essential for coordinating teamwork when working in projects. They
support computational thinking practices such as collaboration and tinkering. Yet, when using
block-based languages, which are an excellent choice for novice programmers, there is no ade-
quate solution that allows this form of collaboration. This paper presents a concept for a simple
and easy-to-use web-based version control system as well as an exemplary implementation for
the popular language Snap!. Based on an analysis of existing version control systems, their use
in Computer Science Education in university and school contexts, and specifics of block-based-
languages, key design principles for a version control system for block-based languages are out-
lined. Based on this, possible use cases for such a version control system in classroom environ-
ments will be discussed.

Easy-to-use version control system for collaboration and tinkering with block-based languages

Keywords

Version Control System; Block-based Languages; Snap!; Computational Thinking; Collaboration;
Tinkering

* These authors contributed equally to this work.

Header – Please leave the header blank

Footer – Please leave the footer blank

Abstract

Version control systems are essential for coordinating teamwork when working in projects. They
support computational thinking approaches such as collaboration and tinkering. Yet, when using
block-based languages, which are an excellent choice for novice programmers, there is no ade-
quate solution that allows this form of collaboration. This paper presents a concept for a simple
and easy to use web-based version control system as well as an exemplary implementation for
the popular language Snap!. This concept is based on an analysis of existing version control sys-
tems and their use in Computer Science Education. Furthermore, possible use cases for such a
version control system in classroom environments will be outlined.

Introduction

Collaborative learning based on the work of Vygotsky integrates social aspects into construction-
istic learning. Much has been written about the advantages of working in groups early on (e.g.
Chase & Okie, 2000). Using Projects and project-based-learning (PBL) is one way to enable col-
laborative learning and a typical method of CSE. PBL is suitable for novices as well as for more
advanced learners (Kastl & Romeike, 2015). When carrying out programming projects, one of the
recurring challenges is that often arises that different versions of code have to be managed, project
groups need to coordinate and merge their code. To work together efficiently, professionals use
version control systems. Such systems enable collaboration by allowing teams to work together
on the same project by sharing corresponding files. Furthermore, they keep track of revisions and,
therefore, make it possible to go back to old versions, to track changes, to fix bugs, or to work in
branches, which enables experimenting and tinkering in a sandbox. In a PBL context, such a
version control system therefore enables collaboration and tinkering, which are approaches to
Computational Thinking (CT) (Barr & Stephenson, 2011). Collaboration is an important aspect of
working as a computer scientist. It includes factors such as decomposition of tasks or communi-
cation among each other and promotes motivation and commitment. When sharing or discussing
their actions, learners can learn from, reflect and build on the work of others (Laurillard, 2009). In
CSE, collaboration is considered to be important early on as well as throughout the whole curric-
ulum. For example, the new ACM/CSTA standards for K12 education (Computer Science
Teachers Association, 2017) require collaborative work already in Level 1b (Grades 3-5). Tinker-
ing needs a risk-free environment that supports trial and improvement and fosters confidence,
creativity and independent learning (Resnick & Rosenbaum, 2013).

The use of a professional version control system in the classroom is generally possible, but it is
suitable only for text-based programming languages and comes with a lot of overhead. Even grad-
uate students are often overwhelmed by the sheer complexity of professional tools (Haaranen &
Lehtinen, 2015). For a lot of purposes, only a few functionalities like version history, merging and
committing are needed. For novice programmers in Java, the integration of SVN and Git in BlueJ
aims to reduce this overhead (Fisker, McCall, Kölling, & Quig, 2008).

Block-based languages like Scratch or Snap! are very popular in lessons with novice programmers
for multiple reasons. As an example, they enable students to build creative programs without
needing to worry about syntax (Maloney et al., 2004). Collaboration can take place in two dimen-
sions. Currently, block-based languages only support collaboration in a sequential sense, by sup-
porting and emphasizing remixing (Monroy-Hernandez, 2012). However, there are only limited
solutions to enable parallel collaboration in the sense of working on one project at the same time.
In a day-long workshop on agile project management with 9th to 12th graders, we recently had a
team consisting of three programming pairs working in Snap!: Every time they wanted to put to-
gether their program pieces (e.g. for a prototype), every pair had to export their project and down-
load it. Then they needed to transfer the XML files to one PC, e.g. via memory stick, cloud drive
or e-mail. Afterwards, they had to import each project in Snap!, manually assemble their scripts,
sprites, etc., test and fix bugs on this PC. Hence, the whole team sat in front of one computer to
finish the prototype. This is not efficient, the same counts for redistributing the code to all team
members. Afterwards, they needed to export the new project status, download it and share it to

Constructionism2018 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

the other two computers so that everyone was up to date. They also had to manage the versions
properly in order to be able to use an old version if necessary. Experience has shown that this
often causes problems. As one might expect, the students named these as major downsides to
the workflow in the concluding reflection phase.

In order to address this problem, we decided to design a version control system for block-based
languages. Therefore, a review of existing professional and didactically adapted version control
systems and their use in CSE was carried out with the goal to identify important findings and adapt
those for block-based languages. Using an exemplary implementation for the block-based lan-
guage Snap!, the proposed concept is demonstrated and its benefits are highlighted.

Context and Background

Versions control systems

Version Control systems offer a variety of functions important to collaborative practices. First of
all, they document changes and their reasons by providing a history for each file under version
control. Each change can be described and summarized by the user through comments. Further-
more, version control systems offer the possibility to restore older versions. This way, unwanted
or problematic changes can be reverted. Besides that, they enable coordination by offering fea-
tures to resolve conflicts with multiple users working on the same file simultaneously. These fea-
tures include locks to prevent multiple users from editing the same file at the same time, the auto-
matic merge of concurrent edits or support for manual merges, if needed.

All files under version control are located in a repository. If a user adds new files to the repository
and/or changes old ones, they commit their changes. Each commit contains awareness infor-
mation, which describe the commit and can be divided into two categories. Internal awareness
information includes changes made, time and date of changes, revision numbers, or names of
committing users. This information is generated automatically. On the other hand, there is explicit
awareness information, which is stated explicitly by the user. It requires explicit action. One exam-
ple is a commit message, in which a user describes the changes he has made (Fisker, McCall,
Kölling, & Quig, 2008). If no one else changed any files in between the last commit and the new
one, this results in a new version, also known as a revision, of the project without any additional
action. If someone else has made changes to files in between, but they are not in conflict to each
other, these changes are automatically merged. If there is a conflict, when e.g. the same line of
source code was changed by more than one person, it must be solved manually by choosing for
each conflict the version which should be in the new revision. Changes between revisions (added
through commits) can be viewed via diffs. Old revisions can be viewed or reverted to at any time.
Furthermore, modern version control systems offer the possibility to branch. A branch is an alter-
native path starting from a certain revision, so that changes can be made in parallel. Branches are
used for development of new features or experimenting, without impacting the current product and
state of the project. A branch can be merged into the master/production branch again later on,
e.g. if the new feature is fully implemented and tested.

Version control systems can be divided into centralized systems (like CSV or SVN) and distributed
systems (like Git or Mercurial). In centralized systems, the repository is kept on a remote server
everyone has access to. Whenever a user wants to introduce changes, they retrieve the latest
version from the server first. As commits are transmitted to the remote server immediately, any
recent changes must be merged, and conflicts have to be resolved before the commit. In contrary,
distributed systems store the whole project history locally on every computer but also on a remote
server. Therefore, each commit will initially be registered locally. To make changes by a commit
available for other people as well, they have to be pushed to a server. From there, they can be
pulled by each collaborator to be available locally. This way, merging and conflict resolution are
not necessary for commits, but when interacting with the server (pushing and pulling). Distributed

Header – Please leave the header blank

Footer – Please leave the footer blank

version control systems are dominant nowadays. Their main advantages are the local “sandboxes”
which enable local changes, reverts etc. for every user offline, the easy branching and merging,
and the independence from just one location where everything is stored (Somasundaram, 2013).

Version control in the classroom

Version control systems are used both at school and university level. At universities, control ver-
sion systems are used frequently. Typical use cases include the provision of course materials or
the submission of homework. Throughout literature, advantages of the use of control version sys-
tems can be divided in organizational and pedagogical ones. Organizational ones are the easy
way to post assignments and give feedback, the possibility to start with skeletons, revert changes
and work remotely, as well as having timestamps for submissions (Lawrance, Jung, & Wiseman,
2013). The pedagogical advantages include easier collaboration, the possibility to assess individ-
ual contribution, making the development process visible for the teacher and data security in the
sense of a backup (cf. Reid & Wilson, 2005, Lawrance, Jung & Wiseman, 2013, Glassy, 2006).
Overall, it is reported that version control systems are considered useful by students and teachers
alike (e.g. (Isomöttönen & Cochez, 2014)). Just like the advantages, further experience and espe-
cially problems in the use of control version systems are reported. These hint at obstacles that
must be addressed in a pedagogical version control system. One reported problem is a non-iter-
ative workflow with long periods without a commit. This is an obstacle especially at the beginning
and takes a lot of the advantages away (Glassy, 2006). Overall, professional version control sys-
tems are reported as hard to learn (cf. Isomöttönen & Cochez, 2014, Haaranen & Lehtinen, 2015).
Students sometimes damage repositories so that tutors need to repair them, or misuse features,
e.g. repeated checkouts instead of updates in SVN (Reid & Wilson, 2005). In some cases students
even accessed third-party repositories (Reid & Wilson, 2005). From a student's point of view, con-
flicts and their resolution are the most complex and difficult tasks (Isomöttönen & Cochez, 2014).
If the students always work in the centralized repository they have more problems than when they
work in their own branches and merge when finishing a subtask (Lawrance, Jung, & Wiseman,
2013). In addition to students, teachers also need significant competencies to use version control
systems successfully in the classroom. They need to set them up and configure them, and also
support the students, e.g. when fixing broken repositories.

Brichzin and Rau (2015) give an overview of typical problems that can be addressed by the use
of a version control system in a school context that matches our experiences. One problem is the
pupils name convention and versioning practice – e.g. filenames like game, game_2, game (copy),
game (working). This is an obstacle for collaboration as well as identifying the current state of the
project to work on after holidays or a longer break. If the students make no backups of the current
or former status of the project, there is always the danger of deleting the work of up to several
weeks by accident. The next problem they mention is merging partial programs in PBL together
regularly, no matter whether it is an agile project with iterations or a traditional waterfall project.
Using a version control system facilitates regular merging and therefore helps to identify interface
problems at an early stage of the project and address them accordingly. Another typical problem
within the school context is that an entire team gets blocked because a student has forgotten the
current code at home or they lack access to his account while the student is sick. Furthermore,
enthusiastic students can't continue to work on the project at home, because the code is stored
on the schools’ machines.
However, the introduction of a professional version control system is associated with a large over-
head. Pupils must develop an understanding of the functionality of version control systems, famil-
iarize themselves with the respective commands and working procedures. The complexity of this
task poses problems even for entry-level professionals and graduate students. Therefore, Fisker
et al. (2008) enabled group work support in the form of a simplified SVN and Git integration for the
IDE BlueJ. One design principle for this was making awareness information available. This is im-
portant for group work and to keep track of others’ progress. Another explicit focus was simplicity
by reducing overhead: files no longer need to be added to version control manually. Furthermore,
many of the powerful but not essential features (such as branching, tagging, revert, single file
functions) of SVN resp. Git are not available via the BlueJ IDE to ensure easy access. The same

Constructionism2018 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

goes for the graphical user interface, which is kept basic and simple. Functionalities such as com-
mit or update are made clearer but still contain the standard terminology (e.g. “Update from Re-
pository”)

Block based programming

Traditional text-based programming languages have been used for introductory programming or
computer science courses but are considered to be major entry barriers. Block based languages
take away users' responsibility to take care of precise syntax compliance. They allow for easier
realization of creative projects and give direct feedback by visualizing the current program’s state.
Known examples of block-based languages are Scratch, Snap!, or GP. Most block-based lan-
guages are capable of running in the browser. Hence, they do not require an installation on student
devices, making them a reasonable choice for educators. Those languages are used in schools
and university courses, especially for novices. Using block-based languages with a traditional ver-
sion control system is unsuitable: Traditional version control systems are built to manage multiple
source text files, whereas in block-based programming environments, students interact with their
project in a graphical way. In Snap!, objects are represented as so called “sprites”. Due to this,
each object is represented graphically. Sprites have scripts, which are a sequence of several con-
nected blocks (see Figure 1).

Figure 1. Snap! user interface

Certain block-based applications such as Kanto, Blockly, or Netsblox already allow multiple stu-
dents to remotely collaborate on a project (Broll et al, 2017, Ohshima, Freudenberg & Amelang,
2017). However, they lack essential features that version control systems offer, such as version
history, branches, or commits, which are considered essential in PBL settings.

A version control system for block-based languages

Since existing tools of version control systems cannot be used for block-based languages, we
have developed a solution based on research regarding the use of version control systems in the
classroom. Therefore, we conducted a didactic transposition of professional version control sys-
tems with explicit attention to specific characteristics of block-based languages and needs of pro-
gramming novices. It follows two guiding ideas:

Header – Please leave the header blank

Footer – Please leave the footer blank

▪ Visualization. The project status should always be visible at a glance. For this purpose, it

should be displayed in a graphical way.
▪ Easy to use. The number of functionalities should be reduced, and unnecessary settings

removed. The usage should be simple for both students and teachers. The latter usually
having little experience with professional software development tools necessitate this
guideline even more.

The second objective is consistent with the goals for version control realization in BlueJ (Fisker,
McCall, Kölling, & Quig, 2008). In contrast to their solution, however, the operation is further re-
duced, and more simplifications are offered even for teachers. In the following, we describe the
concept of the version control system and use images of our concrete implementation for Snap!
to illustrate the concept.

Figure 2. Graphical visualization of a project

Conception

A version control system for block-based languages needs to be web-based. A project is repre-
sented by a graph similar to a Git tree. A node corresponds to a revision of version control systems
(see Figure 2). It can be classified as a special case of a centralized version control system: there
is only one project status stored centrally on a server. However, each user always works in their
own branch, which is the norm for distributed version control systems. That means, if a user starts
editing a revision, they implicitly start their own branch. If two or more users start working on the
same revision, one individual branch per user is automatically created. Therefore, changes to the
same revision cannot lead directly to a conflict. This also means that there is no explicit master
branch. This addresses the experiences described by Lawrance that students had fewer problems
when using their own branch for each sub-task (Lawrance, Jung, & Wiseman, 2013).

To create a project, users can either use an empty project or upload their own templates (e.g. with
predefined blocks or sprites). It is also possible to upload additional files later on. As the version

Constructionism2018 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

control system runs in the browser, there is no need to set up an individual server to use the
version control system or configure existing services. This allows the teacher to use version control
systems without specific knowledge in a very flexible way.

Double-clicking a node in the graph opens the respective revision directly in the corresponding
programming system (e.g. Snap!). In doing so, an additional button is inserted into the menu of
the programming system. Clicking this button commits every change made by the user directly.
By enabling a commit with only one command directly from the user interface, the described prob-
lem of few commits during long work periods is counteracted. The user is prompted to enter a
commit message. In this way, students are motivated to briefly summarize their changes. Addi-
tional implicit awareness information such as timestamps, number of sprites or scripts added and
removed, and total number of sprites or scripts are provided for each node. These make it easier
for other group members to track changes in the project. Reverting to an old revision is done
simply by opening the specific node and beginning to work from there.

Figure 3. Merge process

The process of merging multiple revisions is initiated by selecting several nodes. If the selection
is confirmed, the merge takes place. As long as there is no conflict, the system will merge auto-
matically, similar to a professional version control system. This is the case if neither sprites nor
scripts have been changed or only one user has made changes. The more recent version is iden-
tified by the ancestor relationship in the graph. Therefore, no interaction on the student side is
necessary, unless several students have edited the same script. If this is the case, there will be a
conflict. To resolve this conflict, we use a merge view providing all alternatives of the conflicting
scripts side by side with comments attached. The students can then select the appropriate version
or compose a suitable solution. For an example, see Figure 4: Bob and Susi edited the same
script. In addition, Bob added another script. The new script will be merged automatically, while
the existing script they both edited will raise a merge conflict. Therefore, both scripts are added to
the merged version providing commentary details.

Figure 4. Merge view

Header – Please leave the header blank

Footer – Please leave the footer blank

Features such as add, push or status, which are known from professional VCS, are not necessary,
because the structure of the version control system and block-based languages make these fea-
tures obsolete. The only activities that students must actively do and learn are commit and merge.

The user guidance and interface are deliberately kept simple. The same applies to terminology,
which must be tailored to the target group. Only two essential features need to be named. In
discussions with computer science teachers, the use of the term commit was rated as difficult. The
term merge, on the other hand, was considered suitable for students of all grades. Accordingly,
the original term was used in this case, whereas the term post to <<project_name>> was intro-
duced for commit. This term provides a suitable analogy for commit, comes from students’ daily
life and is appropriate for all ages.

In summary, key features provided are:

▪ visualization of the project and its history in a graph
▪ automatic branching for each editor of a revision
▪ opening each revision directly in the respective programming system in the browser
▪ easy commit from within the programming system used
▪ merging by selecting the respective nodes
▪ visualizing conflicts in a merge view
▪ providing implicit and explicit awareness information for each revision
▪ support for multiple templates and starting nodes

Exemplary Implementation: smerge

With “smerge” (derived from the terms “Snap!” and “merge”), we provide an exemplary implemen-
tation of the described concept. The tool is implemented in Python 3 and JavaScript using the
Django framework1 and cytoscape.js2. For running a separate instance, only a server running
Apache, Nginx, or similar is needed3. Instead of handling plain source code as with traditional
version control systems, block based languages require a different approach due to their structure.
Therefore, we utilize the XML file structure of Snap! projects, which differs from languages like
Scratch or GP. On opening a certain revision, the associated XML project file is passed to a Snap!
instance. In this step, a custom block containing the commit functionality (written in JavaScript) is
injected. On commit, the current state of the project is exported in XML format and sent to our
servers. As soon as the user triggers a merge, the corresponding project files are analyzed and
compared on XML level. While conflict detection is easy when comparing source code in text form
(usually line by line), once more a new solution for block-based languages is needed. Our solution
regarding this conflict detection problem is based on sprite names and script coordinates. For
conflict resolution, revisions and their ancestors are compared on XML level according to the auto-
merge concept described above.

 (How to) smerge in the classroom

In the following, we will describe a possible workflow in smerge when using it in PBL. One way to
implement PBL in the classroom is agile projects, which have already been used for PBL success-
fully (Kastl & Romeike, 2015). In doing so, agile practices such as user stories, standup meetings,
pair programming, sprints or prototypes are adapted for the use in schools (Romeike & Göttel,
2012). We will use this framework to describe an exemplary workflow for smerge in PBL (see
Figure 5).

For constructionist learning in school projects, students first create their own initial draft. Therefore,
each group creates their own smerge project. In this way, they have created a place where all
changes to the code are stored centrally. Each programming pair continuously works on one user

1 https://www.djangoproject.com/
2 http://js.cytoscape.org/
3 A running instance can be found at smerge.org, the source at github.com/manzanillo/smerge.

Constructionism2018 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

story at a time. With the auto branch feature of smerge, every user story or feature is realized in
its own branch. Pupils are therefore encouraged to work on tasks in parallel and can focus on a
single feature each. Each pair has its own sandbox in which they can experiment and tinker.

Figure 5. Smerge workflow

This type of workflow also promotes a more realistic form of collaboration in projects. At the end
of a sprint, at the latest, the students will assemble their subprograms into a new prototype by
using smerge to merge their branches. With smerge, every programming pair can then test the
resulting prototype on its own as opposed to the described problem of all group members in front
of a single pc. The merge is a ritualized team activity. A project also involves constantly improving
the inner structure of the program through continuous refactoring. Smerge supports this with its
merge view. By contrasting the individual parts from different sources with each other in the merge
view, smerge motivates students to think about possible refactoring. For example, in order to make
their own code easier to read, students tend to outsource redundant parts of the code into custom
blocks. During the process, the visual representation of smerge, in addition to a possible project
board, helps teachers and students keep track of the progress of the project.

The version control system can also be used highly flexibly in teaching outside of PBL. In the
following, we will describe a lesson to introduce broadcasting in lower secondary education. In this
scenario, every student will create his/her own individual instance of a prototype given by the
teacher. Let's assume we want to make a group of penguins dance to a given beat. The beat is
determined in a sprite created by the teacher and is delivered to the students via broadcasts. The
students’ task is to create their own penguin and let it react to the different bars of the music. For
this purpose, the teacher provides a template with a simple penguin sprite. The students then
rename their own sprite, design its looks and implement an individual behavior on the rhythm.
After the students have finished their task, all individual solutions are to be combined into a com-
plete work to emphasize the concept of broadcasts with more receivers. Without such a tool, it
would require teachers to collect all students’ solutions and combine them manually. In smerge,
this combination is reduced to nothing more than the click of a button.

In addition, smerge can be used for a longer teaching sequence. In doing so, students develop
multiple small programs to learn specific CT concepts. The class, or each student, can collect all
these sub-projects within one smerge project. Every lesson, the students receive a new template
in which they complete a specific task. After several units, the subprojects are combined to form
an overall project, and a greater coherence becomes apparent. One example is the game
Breakout, where the paddle, the ball and the bricks can be considered three sub-projects. So,
handling user input, movement and bouncing of walls as well as list for placing bricks are main
topics for individual lessons.

It would also be conceivable to use several templates for differentiation. Teachers can provide
different templates for different types of learners. By providing weaker students with other tasks
or more support, e. g. through given blocks, within the framework of a project, they can be sup-
ported individually. In addition, the process of tracking students’ progress and assisting them ac-
cordingly is enhanced using smerge.

Header – Please leave the header blank

Footer – Please leave the footer blank

Conclusion

In conclusion, this concept addresses all the initially described school-specific use-cases such as
managing files and problems like blocked teams with code forgotten at home or sick students. It
offers organizational advantages such as the possibility to share templates and skeletons in an
easy manner, to start with multiple skeletons for different groups, to revert changes or work re-
motely from home. Teachers can concentrate on the pedagogical aspects of their lesson concept,
as they are no longer involved in organizational activities such as setting up a server for a version
control system. Regarding pedagogical advantages, both the current status of the project as well
as its development process and progress become visible to both teachers and students. Because
of the graphical visualization and the possibility to directly open, execute and test each node di-
rectly, this goes much further than professional version control systems. It allows for great flexibility
and a constructionist way of teaching and learning: it supports PBL, differentiation, decomposing
a greater whole in small learning lections, or class-wide collaboration.

The outlined concept for a version control system enables collaboration in block-based languages.
The version history provides a risk-free environment that invites users to experiment and tinker.
Features, design and interface are reduced and adapted to the target group of novice program-
mers and based on existing research and experience regarding the use of version control systems.
Smerge as an exemplary implementation of the concept offers all these features and is ready to
be used in CSE.

References

Barr, V., & Stephenson, C. (2011, March Volume 2 Issue 1). Bringing computational
thinking to K-12: what is Involved and what is the role of the computer science education
community? ACM Inroads, pp. 48-54.

Brichzin, P., & Rau, T. (2015). Repositories zur Unterstützung von kollaborativen
Arbeiten in Softwareprojekten [GERMAN]. INFOS 2015 - Informatik allgemeinbildend
begreifen (pp. 73-82). Bonn, Germany: Lecture Notes in Informatics (LNI), Gesellschaft
für Informatik.

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, J., Maroti, M., Carrillo, A., Weeden-Wright, S.,
Vanags, C., Swartz, J., Lu, M. (2017). A Visual Programming Environment for Learning
Distributed Programming. Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (pp. 81-86). New York, NY, USA: ACM.

Chase, J. D., & Okie, E. G. (2000). Combining cooperative learning and peer instruction
in introductory computer science. SIGCSE '00 Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education (pp. 372-376). New York: ACM.

Computer Science Teachers Association. (2017). CSTA K-12 Computer Science
Standards, Revised 2017. Retrieved from http://www.csteachers.org/standards

Fisker, K., McCall, D., Kölling, M., & Quig, B. (2008). Group Work Support for the BlueJ
IDE. Proceedings of the 13th annual conference on Innovation and technology in
computer science education (pp. 163-168). New York, NY, USA: ACM.

Glassy, L. (2006, Volume 21 Issue 3). Using version control to observe student software
development processes. Journal of Computing Sciences in Colleges, pp. 99-106.

Constructionism2018 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Haaranen, L., & Lehtinen, T. (2015). Teaching Git on the Side: Version Control System
as a Course Platform. Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education (pp. 87-92). New York, NY, USA: ACM.

Isomöttönen, V., & Cochez, M. (2014). Challenges and Confusions in Learning Version
Control with Git. Information and Communication Technologies in Education, Research,
and Industrial Applications Communications in Computer and Information Science : 10th
International Conference, ICTERI 2014 (pp. 178-193). Kherson, Ukraine: Springer
International Publishing.

Kastl, P., & Romeike, R. (2015). "Now they just start working, and organize themselves"
First Results of Introducing Agile Practices in Lessons. Proceedings of the Workshop in
Primary and Secondary Computing Education (WiPSCE '15) (pp. 25-28). New York, NY,
USA: ACM.

Laurillard, D. (2009). The pedagogical challenges to collaborative technologies.
International Journal of Computer-Supported Collaborative Learning. 4(1), pp. 5-20.
Lawrance, J., Jung, S., & Wiseman, C. (2013). Git on the cloud in the classroom.
SIGCSE '13 Proceeding of the 44th ACM technical symposium on Computer science
education (pp. 639-644). New York, NY, USA: ACM.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch:
A Sneak Preview. Proceedings of the Second International Conference on Creating,
Connecting and Collaborating through Computing (C5 '04). IEEE Computer Society (pp.
104-109). New York, NY, USA: ACM.

Monroy-Hernandez, A. (2012). Designing for remixing: Supporting an online community
of amateur creators. Cambridge, MA, USA: Doctoral dissertation, Massachusetts
Institute of Technology.

Ohshima, Y., Freudenberg, B., & Amelang, D. (2017). Kanto: a multi-participant screen-
sharing system for Etoys, Snap!, and GP . Proceedings of the 3rd ACM SIGPLAN
International Workshop on Programming Experience (pp. 7-10). New York, NY, USA:
ACM.

Reid, K. L., & Wilson, G. V. (2005). Learning by Doing: Introducing Version Control as a
Way to Manage Student Assignments. SIGCSE '05 Proceedings of the 36th SIGCSE
technical symposium on Computer science education (pp. 272-276). New York, NY,
USA: ACM.

Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey, & D. E.
Kanter, Design, make, play: Growing the next generation of STEM innovators (pp. 163-
181). New York, NY, USA: Routledge.

Romeike, R., & Göttel, T. (2012). Agile projects in high school computing education:
emphasizing a learners' perspective . WiPSCE '12 Proceedings of the 7th Workshop in
Primary and Secondary Computing Education (pp. 48-57). New York, NY, USA: ACM.
Somasundaram, R. (2013). Git: Version control for everyone. Birmingham, UK: Packt
Publishing Ltd.

