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Abstract. Data management is central to many CS innovations: Smart
home technologies and the Internet of Things, for example, are based on
processing data with high velocity. One of the most interesting topics
emphasizing several challenges in this field is real-time data analysis. In
secondary CS education, it is only considered marginally. So far, there
are no tools suitable for general-purpose real-time data analysis in school.
In this paper, we discuss this topic from a secondary CS education per-
spective. Besides central concepts and differences to traditional data
analysis using relational databases, we describe the development of a
general-purpose Snap! extension that allows accessing and processing
data from various sources. Thereby, students are enabled to conduct
data analyses using, for example, sensor data or web APIs. With the
example of a weather station, we outline how this tool can be used in
school for analyzing sensor data generated in the classroom.

Keywords: Real-time data analysis · Data stream systems · Data man-
agement · Sensor data · Physical computing · Secondary CS education

1 Introduction

In previous years, several innovative topics of computer science became perva-
sive in our daily lives. The increasing possibilities when capturing, processing,
analyzing and visualizing data are, for example, central to home automation
(“smart home”) and when connecting various devices in the Internet of Things.
Also, data analyses are often used for decision-finding, even in contexts in which
this would hardly be expected in, such as autonomous cars or when addressing
voters in election campaigns. The emerging field data management comprises
several developments originating from the challenge to store and analyze so-
called big data, i. e. large amounts of data that are generated and analyzed with
high velocity and have strongly varying structures [10]. Despite its highly in-
novative character, various practices and principles of this field seem promising
for general educative CS education. For example, partitioning and replication of
data are increasingly relevant, not only when developing data management sys-
tems, but also when synchronizing data between different devices and services:
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Understanding why data are sometimes duplicated or lost and how to prevent
this is hardly possible without getting to know the underlying concepts, such as
redundancy. One exemplary topic emphasizing several principles and practices
of data management, is real-time data analysis. In practice, such analyses are
often conducted using data stream systems. With these, immediate analysis of
large amounts of data are possible. As today we are often confronted with the
results and implications of real-time data analyses, getting to know their ba-
sic principles becomes increasingly relevant for understanding such results, for
evaluating their quality and relevance, but also for making decisions based on
such data [7]. For developing and fostering competencies related to capturing,
storing and processing data and for estimating and evaluating the consequences
and implications of these possibilities, real-time analyses are an ideal starting
point. Hence, in this paper we will outline the functionality and central principles
of real-time data analysis in general and of data stream systems in particular.
Based on this, we will describe how central ideas of real-time data analysis can
be included in secondary education using a general-purpose data stream system
extension for the block-based programming language Snap! [8].

2 Related Work

Despite their high relevance, not only in computer science, neither the topic
data management in general, nor real-time data analyses in particular, have
been examined in detail as topics for secondary CS education yet. Although
related contexts, such as the Internet of Things, have already been discussed as
topic for CS education (cf. e. g. [11]), courses and projects presented are typically
designed for higher education. As they pursue different goals, only few aspects
can be transferred to our work, such as the practical orientation and the hands-
on approach. Also in robotics, processing streams of sensor data and events is
central from a technical perspective, but has not yet been discussed as a topic
for CS education. As we have shown in a qualitative analysis of various curricula
and educational standards, today most data management topics, including real-
time data analysis, are typically not included in secondary CS teaching [5]. In
consequence, as of today, there are no suitable tools for general-purpose real-time
data analysis in school. To bring aspects of modern data analyses to school, we
already developed and described a tool for analyzing the Twitter data stream
[6], which has been presented to teachers and discussed with them at various
opportunities. The advantages in comparison to data analyses using databases
were convincing for most teachers. Yet, there was always one concern: To work
with the Twitter API, students need to have an account on this platform. As a
workaround, we offered the possibility to work offline using a cached data set, but
this was obviously less motivating for the students than working with live data.
Also, teachers were often concerned that privacy issues might arise and noted
the restricted flexibility of the tool, as it only supported the Twitter data stream
as a data source. Hence, for tackling these issues, in this paper we describe a new
general-purpose approach which allows using various data sources and nearly all
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possibilities of the continuous query language1.

3 Real-Time Data Analyses

Today, real-time analyses are being used for several purposes: analyzing credit
card transactions in order to prevent fraud (cf. [12]), reacting to temperature
changes in smart home environments, or monitoring the environment of smart
cars. Although in many use cases, providing results of data analysis immediately
is not essential, in most modern use cases there are at least weak restrictions
on the reaction times of a system: Typically, users want data to be available
as soon as possible, hence “soft real-time”2 becomes increasingly important. In
other use cases, such as industrial robots, the restrictions on data analysis are
even harder: they need to fulfill firm or hard real-time requirements3.

In order to meet a deadline even when analyzing large amounts of data,
traditional data analyses are not sufficient. Instead, typical real-time data anal-
yses are in several parts completely different. While traditional data sources are
rather finite and discrete, for example when sensor data streams are analyzed,
the analysis system needs to handle infinite and continuous data sets (cf. [13]).
Also, the amount of data sources (in particular sensors) is growing, with wireless
communication the data are available faster than years ago, and the data rate is
increasing drastically [13]. Yet, when regarding current CS teaching, analyzing
data in schools, if at all, typically takes place using databases: For example, in
popular weather station projects, the sensors data are often stored in relational
databases and queried using the query language SQL. While this approach is
suitable for traditional data analyses, several challenges occur when trying to
conduct real-time analysis that way: In particular when data are generated con-
tinuously, analysis jobs would need to be started frequently in order to ensure
up-to-date results, as determining distinct points in time for starting the analy-
sis is not possible when analyzing data streams4. In consequence, the database
(and the analysis) gets overloaded or stuck because of the continuous and paral-
lel read and write operations. Additionally, using databases for this purpose also
results in enormous amounts of data being stored, because of the high rate of
data generation and as it is not possible to delete outdated values, as information

1 The “continuous query language” (CQL) is similar in syntax to SQL, but in particu-
lar allows using “sliding windows”, which makes it suitable for data stream analysis
(cf. [1]).

2 Soft real-time allow even frequent misses of the deadline, as only service quality is
being influenced (cf. e. g. [3]).

3 Hard real-time strongly requires adherence to a deadline, as exceeding it results in a
system failure. Firm real-time tolerates missing the given deadline infrequently, but
the analysis results become irrelevant after the deadline and the quality of service is
degraded.

4 “A data stream is a real-time, continuous, ordered (implicitly by arrival time or
explicitly by timestamp) sequence of items. It is impossible to control the order in
which items arrive, nor is it feasible to locally store a stream in its entirety.” [4]
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would get lost. Hence, although databases are a suitable tool for storing large
amounts of rather static data for a long time and analyzing such data, they can
hardly be used for real-time data analysis. Today, this problem can be solved by
using data stream systems, which are designed as general-purpose systems for
fast analysis of continuous data streams.

In several characteristics, these systems are the opposite of databases: In par-
ticular, data stream systems do not store data permanently, but instead process
them on-the-fly by applying queries that have been previously defined [9]. Thus,
data stream systems are appropriate when data are to be analyzed only once,
immediately after being generated. This is the case in particular for sensor data:
As every value is only up-to-date until the next value is generated, immediately
analyzing them is important. In addition, in such use cases it is typically rea-
sonable to drop values if they cannot be analyzed immediately and to continue
with the next value which is then the most relevant one, as significant changes
typically do not influence single values only. Data stream systems can, in partic-
ular, show their potential when “sliding windows” are used, i. e. when a defined
number of recent values or all values from a defined time span are analyzed
(cf. [2]). With databases, during every execution of a query, all data stored in
the database would be re-evaluated (whether or not they were changed before),
while using “sliding windows” allows to cache and evaluate only the relevant
data, ensuring that they are deleted from the cache when out-of-date.
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Fig. 1. Functional principles of databases and data stream systems.

The different functional principles of databases and data stream systems are
visualized in Fig. 1: When using databases, storing and analyzing data are inde-
pendent processes. In contrast, in data stream systems, data is directly analyzed
after they were received by the system. Hence, many modern systems process-
ing continuous data streams are based on characteristics of data stream systems
rather than of databases: For example, when measuring the wind velocity in a
smart home project for triggering the closure of windows, it is neither important
to process every single value nor to store these data permanently. Hence, data
stream systems are ideal for this purpose. To summarize, Table 1 shows a com-
parison of central characteristics of both, databases and data stream systems.
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Table 1. Comparison of the main characteristics of databases and data stream systems.

characteristics database system data stream system

data storage permanent storage, often
relational but also other

paradigms

no storage except caching of
values needed for further

processing

data processing when executing a query immediately after new data
were received

typical data data that should be stored
permanently and that are

relevant for long term; often
used for multiple

queries/purposes; often rather
static data

continuous data streams
consisting of data which

quickly become outdated;
typically only processed for

one purpose

query language typically descriptive, often
SQL

typically descriptive, often
CQL

popular
implementations

Professional implementations:
MySQL, PostgreSQL,

MongoDB . . .

Research implementations:
STREAM, AURORA,

TelegraphCQ, Odysseus . . .

central concepts integrity, consistency,
redundancy

availability, concurrency

4 Real-Time Data Analyses in Current Secondary CS
Teaching

When the topic “data” is addressed in secondary CS teaching, the focus is typ-
ically on (relational) databases [5]. This has not been changed since the early
1990s. Thus, because of the tremendous developments in recent years, several
topics that are strongly related to the students’ daily life today are only consid-
ered marginally, such as data security, privacy, encryption or meta-data. Also,
“real-time data analysis” is typically not considered in secondary CS teaching at
all: Although such analyses are pervasive in our daily life, understanding their
underlying principles and functioning is not a goal of typical CS education. Yet,
to understand their relevance, opportunities and threats, getting to know basic
aspects of real-time data analysis is essential. For example, it is hard to imagine
how large amounts of data captured by CCTV may be analyzed in real-time
without knowing the underlying analysis methods. But when they know about
the restrictions and differences of real-time analysis in comparison to data anal-
ysis in general, students also become familiar with the involved opportunities
and threats.

Recently, aspects of data management and real-time data analysis can be
found in school teaching when data is acquired and evaluated in physical com-
puting projects. For example, sensors are used for measuring and evaluating
environmental influences. In simple projects, data is typically processed directly
on the microcontroller, e. g. when just reacting on concrete values or measuring
and displaying values such as the current temperature. But in more complex
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projects, for example calculating average temperatures for defined time frames,
analyzing the data directly on the microcontroller is often not possible due to
memory and performance restrictions. Hence, data is often sent to a computer
for further storage and analysis. This typically involves multiple tools, such as
the programming environment for the microcontroller, one for controlling data
storage and analysis, and a database such as SQLite for data storage.

Currently, a popular project in secondary schools is building weather sta-
tions. With several sensors, data is gathered continuously. Often, the goal is
more complex than just showing the current values, as for example, average or
extreme values are more interesting. When calculating such values for defined
time frames (i. e. for the last 24 hours), the analysis becomes too complex for typ-
ical microcontrollers used in school. When trying to use traditional approaches
for storing and analyzing the sensor data, all values in this time frame need to
be stored in a suitable data storage, deleted from it as soon as they are outdated
and replaced with other values. This would lead to numerous read/write opera-
tions. When using databases for this purpose, as it is common in such projects,
the problems described before arise. Yet, professional data stream systems are
hardly suitable for use within CS education because of their high complexity.

5 Challenges for Teaching Real-Time Data Analysis

5.1 Data Sources

As analyzing data in real-time is an especially suitable for dynamically changing
data, data sources that are traditionally used in CS education are not suitable
for this purpose. Instead, there are in particular two approaches for accessing
“live data”:

Web APIs With several web applications providing free access to their applica-
tion programming interfaces (APIs), lots of data can be acquired. For example,
social media platforms such as Twitter and Facebook provide access to large
parts of their data. There are two approaches for accessing the data: While
Twitter uses a “push” method, i. e. the client subscribes to the stream and is
notified by the server about new tweets (comparable to the observer pattern),
most other APIs use a “pull” approach, i. e. the client frequently requests infor-
mation. Although pulling produces more unnecessary communication and delays,
it has an advantage for teaching: As the connections are not kept open all the
time, typically multiple users can use the same credentials. Also, as most APIs
are based on the REST principle and hence are accessed via HTTP calls, us-
ing them is relatively easy, particularly if they are based on a “pull” approach.
Hence, these interfaces are ideal data sources for real-time data analysis, as the
data are (depending on the application) highly dynamic and as access is typically
only limited by rate limits of the APIs.
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Sensor Data Another data source is sensor data. With physical computing
projects gaining popularity in CS education, using sensors for measuring data
from the environment of a system has already become common in CS teach-
ing. This is also a suitable approach for gathering data for data management
lessons: The main advantage of using sensor data as a basis for data analysis is
that it is generated in real-time in the classroom environment, without hurdles
of using web APIs, such as mandatory user accounts or privacy issues. Also,
as nearly all common programming languages allow communication with mi-
crocontrollers, from traditional object-oriented languages such as Java right up
to block-based programming environments designed for educational use such as
Scratch or Snap! , finding a suitable tool for obtaining data is not a problem.
Another advantage of using sensor data in data management education is the
shift of focus from just processing and analyzing data, to the whole data life
cycle from their acquisition and modeling, through processing and analysis, to
visualization and (perhaps) deletion of data. This depicts the real usage of data
and shows how different CS fields come together in innovative topics like the “In-
ternet of Things”, which is based particularly on data management technologies
and (interconnected) microcontrollers. As capturing sensor data can be done in
various ways, there are also very different types of sensors that might be used,
and hence also different ideas for data processing and analysis.

5.2 Development of a Real-Time Data Analysis Extension for Snap!

Design Decisions For accessing both, sensor data and REST APIs, several
tools suitable for CS education already exist. In particular, the block-based pro-
gramming language Snap! [8] has high potential for data management teaching:
Not only does it provide blocks for sending HTTP requests that are suitable for
accessing REST APIs, it cam also communicate with Arduino (and compatible)
microcontroller boards in the fork Snap4Arduino5. Hence, it is possible to access
sensor data captured with such boards. It is also highly expandable, so that pro-
cessing data is possible using the same tool with which they are captured, and
it is easy-to-use for students, even without previous experiences using it. Thus,
for conducting real-time data analysis in CS teaching, we implemented the cen-
tral features of data stream systems and CQL [1] in the Snap! programming
environment. Using Snap! as a basis clearly contributed to our main goals: The
tool should be flexible enough to be used with various data sources, it should
be easy-to-use in a school context and it should be easy-to-extend by teachers
and (ideally) also by the students themselves. To allow the data stream system
extension to be used in Snap! and all its forks, we only used functionalities that
Snap! provides in its end-user interface and avoided to directly modify its source
code. Hence, the extensions is completely based on primitive Snap! blocks and
JavaScript functions (which can also be called in Snap! out-of-the-box by map-
ping them into blocks). In addition to extending Snap! for allowing data stream
analyses, we also extended it for data visualization purposes in the same way.

5 http://snap4arduino.org
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Implementation of the Data Stream Analysis Extension In contrast to
our tool for analyzing the Twitter data, which was based on imperative queries,
for the Snap! data stream system extension (“Snap!DSS”) we use declarative
queries. This approach facilitates handling the queries as one unit in the pro-
gramming environment and allows nesting queries like is possible, for example, in
typical query languages such as SQL. Also, as professional data stream systems
typically use declarative languages such as CQL, Snap!DSS conveys the function
of professional data stream analysis tools better than SnapTwitter. For making
the extension as flexible as possible, Snap!DSS offers the following functionalities:

– Creating a new data stream from any data source (“reporter block” in Snap! ).
– Combining data from several sources in one stream.
– Running queries on data streams, using aggregate functions, projections,

selections and sliding.
– Using analysis results as a data source for a new data stream (nesting).
– Continuous evaluation of queries in the background.

To implement these functions, we created a data structure which is repre-
sented in Snap! as an unevaluated block. This internal data structure is rather
complex: The data stream system, data streams and queries are represented as
lists with various fields (cf. Fig. 2). In particular, a data stream stores a list of
its queries and information on its data source; each query stores its parameters
as well as a cache of current values. When a data stream system is started, each
query of all of its streams is executed in the background about once per second6.
Hence, the values stored in the data stream system are updated permanently,
as it is common in data stream systems. Despite its complex structure in the
background, Snap!DSS can be easily used with the following blocks:

– : Creates a new data stream system, to which streams
can be added for continuous processing.

– : Creates a new data stream, which is based on the
data given in an input field.

– : Adds a data stream to a data stream system.
– : Executes queries on the data streams.

After the first use of a query, the system continuously captures the relevant
data for the query while running. In a query, aggregate functions (average,
minimum, maximum, sum) and windows may be used.

– : Starts continuous data processing in the background.

– : Stops background data processing.

Besides allowing high flexibility and all relevant functionalities, our approach
also gives the teacher the opportunity to simply adapt the tool for concrete
lessons and thus to further reduce complexity (e. g. by hiding blocks or by cre-
ating new ones), without losing the flexibility for complex analyses.

6 We limited processing of queries to one time per second to prevent performance
issues. Yet, this limit can easily be changed by modifying the block in Snap! .
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Fig. 2. Internal representation of a data stream in Snap! .

Implementation of the Data Visualization Extension To enable students
to visualize data they captured and processed using the data stream system, we
also extended Snap! in order to allow graph visualizations. Therefore, we use
the JavaScript library plotly.js7, which is used in offers diverse plot styles. For
using this library in Snap! , we use the JavaScript block to load and initialize
the API directly in Snap! . This implementation is relatively easy, shows how
Snap! may be extended that way and is prototypical for including JavaScript
libraries in Snap! . In our extension, the plotly.js library is loaded on-the-fly in
the background, thus the user does not have to cope with loading or initializing
it and can use it like any other block. Currently, the functions shown in Fig. 3
are implemented: The C-shaped “plot” block prepares the “plotly.js” library and
(after defining the traces to plot) generates the image shown on the Snap! stage.
Within the “plot” block, users can define multiple traces as well as horizontal
lines (which are, for example, useful for indicating average values).

Fig. 3. Blocks for creating data visualizations using plotly.js.

7 https://plot.ly/javascript/
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6 Example Project: Weather Station

As mentioned before, a common example when capturing and processing sensor
data in school, is building a weather station. This project allows students to
capture lots of data with sensors using almost any typical physical computing
platform8. In order to avoid the problems of using the typical database-based
approach, in the following we will describe, how a weather station can be imple-
mented using our Snap!DSS extension.

In this project, students can recognize the main functional principles and
concepts of real-time data analysis. Hence, they can carry out their own data
analysis and understand how easily several data sources can be combined for
achieving better analysis results, e. g. by making recorded values more accessi-
ble through aggregation and by creating simple forecasts (e. g. using pressure
differences as an indicator for weather changes). Also, by including API data,
the results could be compared to professional analysis for evaluating them. For
capturing and analyzing the data, Snap4Arduino on the software side (with
Snap!DSS loaded) and an Arduino Uno microcontroller board on the hardware
side can be used. We use a combined sensor for temperature, pressure and hu-
midity, which we connected using the “grove shield”9. Yet, our extension does
not restrict using other sensors, as long as their values can be read using reporter
blocks in Snap! , as those are needed for using the data stream extension. Using
our extension, the values read by the reporter blocks are interpreted as a data
stream. After adding this stream to the data stream system and starting it, the
sensor values are evaluated according to the queries defined. As no queries have
been defined yet, nothing would happen when running the program; first, at
least one query has to be defined (which can even happen on-the-fly while the
system is running). As we are interested in the minimum, average and maximum
values of both, pressure and temperature, we can define three queries, as it is
depicted in Fig. 4 and Fig. 5 for calculating the average value of a light sensor.

The results of the queries can directly be shown, e. g. by clicking on a query
block, but they can also be used as input for other blocks in Snap! . Hence, we
are, for example, able to show them on a LCD display or to visualize them using
the data visualization extension, as it was done in the example shown in Fig.
5. For displaying the data of one sensor and the corresponding average value,
the code and the result is shown in Fig. 6. The visualizations may be changed
without losing information, because the data from all sensors are analyzed in
the background as defined in the queries after starting the system.

This example project is easier to understand and implement than the typ-
ical implementation in schools using databases, in particular as fewer different
systems are involved. Due to the design of the tool, it is clearer and allows to
be extended flexibly, and it can also be used for more complex analyses. The
project can be realized with students with or without prior knowledge on data

8 An exemplary project was described by the Raspberry Pi Foundation: https://www.
raspberrypi.org/blog/school-weather-station-project/

9 http://wiki.seeed.cc/Grove_Starter_Kit_v3/
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Fig. 4. Analyzing a sensor data stream.

Fig. 5. Visualizing sensor data.

Fig. 6. The line chart represents the ac-
tual values, the horizontal line shows the
average value.

management or physical computing, and with no additional material or systems
in comparison to typical physical computing projects. The concept can be trans-
ferred to other projects, such as building a smoke detector (which could also
take into account temperature increases, in order to prevent false alerts), real-
izing smart home projects (e. g. switching on the light when the environmental
brightness becomes lower than the average in the last five minutes, ensuring
that temporary peaks are neglected), or even for quantified self projects (such
as realizing a sleep quality measurement device or for measuring heart rates).

Fig. 7. Exemplary weather station project using a combined temperature and pressure
sensor as well as a LCD attached to a Grove shield.

7 Summary

In this paper, we discussed central characteristics of real-time data analyses.
Based on these, we proposed a tool, which is suitable for conducting general-
purpose data stream analysis in secondary CS education. In an example, we
have shown how this tool can be used in school in combination with physical
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computing. Although the Snap!DSS extension reduces complexity, it preserves
characteristics and functionalities of real-time data stream analyses. It is oriented
at the syntax and semantics of CQL, allows its typical operations and implements
central aspects and functionalities of general-purpose data stream systems. In
combination with accessible hardware, students are enabled to pursue their own
ideas and to conduct analyses on their own, which are otherwise only possible for
professionals in the field. Thus, this approach opens up new opportunities for the
students to benefit from the innovations in data management. Yet, by preserving
the typical character of data stream systems and real-time data analyses, it also
fosters a better understanding of several central concepts of data management.
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