
Agile Projects in High School Computing Education –
Emphasizing a Learners’ Perspective

Ralf Romeike
University of Potsdam
August-Bebel-Str. 89

14482 Potsdam, Germany

romeike@cs.uni-potsdam.de

Timo Göttel
University of Hamburg

Vogt-Kölln-Str. 30
22527 Hamburg, Germany

tgoettel@acm.org

ABSTRACT
Software projects are seen as a methodology for secondary com-
puting education which is highly appropriate and meets the de-
mands and goals of Computer Science (CS). Yet the majority of
models and examples for project-based lessons rely on a tradi-
tional software development approach: the waterfall model. In
this paper such models are analyzed for their strength, problems,
and deficiencies. Based on the results of the analysis a new ap-
proach to projects in secondary computing education is presented
which uses the concept of didactic transposition to adapt agile
software development methods for project organization, manage-
ment, and implementation in class. The resulting model applies
valuable practices of eXtreme Programming and Scrum and pro-
vides a set of tools that allow high school software projects to
benefit from modern software development methods. By empha-
sizing dynamic processes and a clear course of action an attractive
perspective on CS is promoted.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science Education

General Terms
Human Factors, Theory.

Keywords
Secondary computing education, agile methods, project-based
learning.

1. INTRODUCTION
In secondary computing education, software projects are pro-
moted to provide an appropriate and student-oriented approach to
Computer Science (CS) [19, 23, 32, 39]. Yet, most projects in this
context are mainly focused on sequential project layouts that re-
semble traditional software development (SD) methodologies
such as the waterfall model. In recent years it became apparent in

professional SE that such methodologies often fail to produce
high quality products, bring forward delays in delivery, and insuf-
ficiently consider customers’ needs (e.g. [26]). Analogue issues
can be found in school projects: unfinished projects, missing time
and motivation for testing, neglected documentation, and teach-
ers’ difficulties in managing software projects are just some of the
problems reported (cp. [19, 24, 32]). In modern SD, agile methods
are promoted to provide a dynamic project management that relies
on interaction and short design iterations. Agile methods build
upon values and provide practices that are also highly expedient
in high school contexts. Therefore, we present a new approach to
projects in secondary computing education, which implements the
theory of didactic transposition to adapt agile methods for project
organization, management and implementation in classroom.
Valuable agile practices of eXtreme Programming (XP) [2] and
Scrum [39] will provide a set of tools allowing software projects
in high schools to reference modern SD by highlighting dynamic
processes that help to focus on good results, a clear course of
action, and an attractive perspective on professional CS by ad-
dressing common problems at the same time. In section 2, re-
search on projects in computing education will be discussed and
problems with prevalent models will be analyzed. The findings
suggest a missing consideration of the learners’ perspective in
project models. In section 3, agile methods in professional and
educational settings are discussed for their potential of supporting
a learners’ perspective. By describing the agile model for school
projects in computing education common agile practices are char-
acterized and adapted. Finally, the model is discussed in the con-
text of existing models, its potential, and issues in computing
education.

2. PROJECTS IN EDUCATION
2.1 Project Based Learning
Project-based learning (PBL) is an approach to teaching and
learning in the classroom aiming for engaging students in explor-
ative and problem-solving activities in authentic contexts. The
concept is described to originate from teaching in Zurich and
Paris in the 19th century. Since then, the idea has been picked up
by various teachers and researchers and enriched with psycho-
logical, pedagogical and sociopolitical aspects, e.g. by Dewey und
Kilpatrick [11]. Projects are understood as learning processes that
draw on interests and demands of the students by striving for a
complex result, often a product. This includes planning, problem-
solving, analysis of different solutions and the evaluation of the
process and its product. PBL is known for increasing students’
motivation, for strengthening self confidence, and for fostering
satisfaction in process and outcome (cp. [5]). Therefore, it is pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

moted to foster high-level thinking skills including problem-
solving and analysis skills. Thus, it helps to gain a deep under-
standing of topics and processes (cp. [1, 25]). PBL is known to
encourage peer interaction (cp. [25]).

In Germany, Frey [16] elaborated PBL by describing the process
along the following steps: A project starts with a project idea,
which should be based on the interests of the students. Subse-
quently the idea is specified in order to find agreement on what
the class will be trying to achieve. After planning the necessary
activities the project plan is carried out. Milestones and meta-
communication serve as tools for supporting the process. This
model is commonly accepted within Germany and was fundamen-
tal for an adapted model in German computing education (cp. 2.3)

Summarizing, projects are characterized by being problem-
focused and interdisciplinary, by allowing students a choice of
topic and foster personal responsibility. Projects are generally
carried out over a longer time span and are often graded “differ-
ently”, e.g. by focusing more on processes and applying less pres-
sure.

2.2 PBL in Secondary Computing Education
Because of the above mentioned benefits, PBL is widely used in
higher computing education (cp. [6, 13]) and secondary comput-
ing education, especially in the context of software projects [39,
41]. Consequently, PBL is recommended as an appropriate ap-
proach to computing education in the majority of German curric-
ula. However, there is limited research focusing on methodologies
for SD projects in secondary education. Meerbaum-Salant and
Hazzan [33] constitute “as far as we know, no general methodol-
ogy has been developed for software development projects in the
high school“. Consequently, they propose an approach which
focuses on a mentoring model for teachers (cp. 2.4).

In Germany, a model for high school software projects was pro-
posed by Frey [15] and elaborated by Schubert and Schwill [39].
The majority of published school SD projects can be attributed to
this model. Therefore the model will be analyzed in the following.

2.3 A Professional Perspective
A majority of publications concerning the use of projects in sec-
ondary computing education1 stems from the 1980s and 1990s,
generally analyzing and adopting the professional approach to SD
and adopting the waterfall model for the classroom. The idea was
that a professional model for SD would provide an appropriate
framework for school projects: it offers students a structured
learning process and gives insights into professional SD processes
at the same time. In comparison to other subjects using PBL only
as a teaching method without a connection to the subject matter
itself, projects are scientifically anchored in CS [39]. Conse-
quently, there is a large body of practice reports on SD projects.
However, by analyzing publications of the major German confer-
ences in computing education of the last 10 years we could not
find any publication concerning methodologies for school projects
in general secondary education. However, research shows that
teachers consider it as important that students get familiar with
SD processes, e.g. by running “through the workflows of the wa-
terfall model” [30].

1 Research on this topic is rare. The statement reflects the situa-

tion in Germany. However, we are not aware of comparable
publications from other countries.

Figure 1 illustrates the project steps of Schubert and Schwill’s
model [39] with the corresponding output of each phase. The
proposed model describes student activities along the software life
cycle. However, it does not provide methods or practices of how
students can reach the expected outcome of each phase. In the
problem analysis phase all important environmental conditions
need to be gathered clearly and completely. Furthermore, this
phase includes planning activities for time, team and equipment.
The resulting requirements definition serves as a contract between
teacher and students. In the subsequent system design process a
model of the system is specified by dividing the “overall system”
into modules. Until here, the activities shall be performed by the
full team, which is allowed to split up into subgroups for minor
tasks. Then, smaller groups handle a module each under their own
responsibility. The remaining phases follow the software life cy-
cle.

Fig. 1. Project model by Schubert and Schwill [39] .

Concerning the team structure, Schubert and Schwill recognize
that the organization of the team cannot follow hierarchical struc-
tures as typically used in professional SD teams. Instead, they
suggest equal status and responsibility among team members and
a “force” for communication and common goals. This goal is
addressed by assigning eight different roles for student positions
within the project (computer responsible, project supervisor, inter-
face responsible, tester, documentation responsible, butler, session
chair, secretary).

Criticism of the methodology points out problems with a per-
ceived bureaucratic overhead: “It is always the same: Students
refuse to first plan on paper. Because only small programs are
written, these are not documented. The taught principles of soft-
ware development are hardly noticed” [19]. Often, testing is omit-
ted in the project realization due to a lack of time and a lack of
perceived importance, especially if the software does not have a
practical use after the project (cp. [24]). Other problems may re-
sult from the structure of the project: The time span that needs to
be scheduled is up to half a year (Schubert and Schwill [39] sug-
gest to perform one project per semester). This is difficult to plan
for, especially if students lack project experience and supportive
practices. Additionally, a sequential project layout collides with
“project-unfriendly” circumstances of formal lessons such as lim-

ited time, heterogeneous student abilities and lessons spread over
several weeks. Humbert [23] even summarizes that the pedagogi-
cal dimensions of PBL are not sufficiently considered in such a
project model. Additional problems of conducting school SD
projects are outlined in the following by pursuing a teachers’
perspective.

2.4 A Teachers’ Perspective
Meerbaum-Salant and Hazzan [32] analyzed difficulties encoun-
tered by teachers in mentoring SD projects in Israeli high schools.
Even though the curricular background and objectives are some-
what different2 than for projects in general educational settings as
described in this paper, the results are similar to the problems
reported from German teachers. Additional problems were identi-
fied in the contexts of scheduling the project, CS expertise of the
teachers, considering students’ individual performances, and
evaluation of the project. Teachers describe mentoring of SD
projects as a more complex task compared to traditional teaching.

Meerbaum-Salant and Hazzan [33] express the need for a general
methodology for SD projects in high school and address the pre-
viously identified problems in a mentoring methodology
(ACMM). It is intended to support teachers, who are expected to
be confident in a variety of knowledge types [32]. Therefore it
describes a set of practices (Pedagogical Class Management As-
pect, Social Aspect, Project Management Aspect) that shall be
considered by teachers while mentoring a project. The ACMM
takes into account the principles of agile software (such as com-
munication, simplicity, feedback, respect), which basically are
reflected in the teacher-student interaction.

2.5 A Learners’ Perspective
For learning settings, where a team of students is working coop-
eratively on projects, we see potential for taking the idea of apply-
ing agile methods further than it is described in the ACMM: pro-
ject management can be done by the student team. This can be
supported by straightforward and easy to use methods adopted
from modern SD. Additionally, students may benefit from experi-
encing a SD process which also includes management aspects in
addition to activities like analysis, designing, coding, and testing,
as described in the other models. In the following we demonstrate
how problems identified by Meerbaum-Salant and Hazzan [32]
may be addressed in such a project by considering agile methods
as presented in section 3.

Schedule: Teachers may need to catch up with teaching of mate-
rial during the project. The sequential project approach does not
allow for such a teacher’s intervention without disturbing the
process. However, in an iterative project design, issues and suc-
cess can be discussed in class regularly.

Required CS knowledge: Some teachers admit a lack of project
development knowledge. Students will need help with CS knowl-
edge while solving problems. It meets the ideas of PBL if student

2 German curricula emphasize computer science concepts in the

context of general education which only partly includes algo-
rithmic thinking and programming. In comparison, the underly-
ing curriculum of the study emphasizes foundations of algo-
rithmic thinking and programming [17]. Additionally, we un-
derstand projects as teamwork where several students or the
whole class are working on the same goal, Meerbaum-Salant
and Hazzan [31] describe projects where students work indi-
vidually and “each student has his or her own project subject”.

teams would be empowered to manage projects themselves. This
can be supported by easy to follow practices and strategies which
make teacher involvement almost unnecessary. Additionally,
clearly defined practices may support teachers’ confidence. Het-
erogeneous student teams stimulate mutual assistance before re-
quiring the help of a teacher.

Students’ individual work: Teachers see a need for personal su-
pervision in order to achieve a timely completion of the project
and meeting of the requirements. Agile methods allow for trans-
ferring this responsibility to the project team, hence relieving the
teacher.

Evaluation of project outcomes: Agile practices naturally lead to a
variety of documents which can be considered for project evalua-
tion (e.g. estimates in planning poker or burn-down charts). Fur-
thermore mutual assessment within teams may be performed.

All suggested practices require a change of the project perspective
from the teacher to the learner. In section 3 the mentioned agile
practices are discussed in more detail and transferred to classroom
settings by the use of didactic transposition.

2.6 Didactic Transposition for Project Meth-
odologies
Didactic transposition describes the process of adapting profes-
sional knowledge of a domain for teaching scenarios based on a
didactic intent [9]. Hazzan et. al. [21] applied didactic transposi-
tion on agile SD methods with the intent to create a teaching
framework and a mentoring methodology for software projects.

The model for school SD projects discussed in 2.1 can be attrib-
uted to didactic transposition as well. Here, the professional proc-
ess was adapted under consideration of the underlying principles
of PBL. Schubert and Schwill [39] emphasize the advantage of a
method which is learning activity and learning content at the same
time. However, we see potential for shifting the focus from pro-
fessional process knowledge to modern professional methods
which may be adapted in a way that they address previously out-
lined problems in school SD projects.

In the following, we discuss agile methods in professional SD and
in education. We applied didactical transposition for developing
an agile approach to projects in computing education which em-
phasizes a learners’ perspective.

3. AGILE PROJECTS IN COMPUTING
EDUCATION
3.1 Agile Methods in Professional and Educa-
tional Settings
Agile methods are popular amongst researchers and practitioners
for enabling software developers to create systems that are more
likely to be accurate in meeting customers requests, finishing in
time, building robust systems, and creating usable/readable code
(cp. [22]). Therefore, in industry agile methods are currently re-
placing waterfall or other linear methodologies that are known for
shortcomings in the above mentioned goals of SD. Agile methods
are focused on social interactions and dynamic creative processes.
Hence, developers in agile teams often report on a strong satisfac-
tion in their work experience and strong confidence in their out-
comes (cp. [27, 31]).

The agile manifesto of 2001 [3] clearly presents values contrast-
ing traditional linear methodologies and underlying understand-
ings:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

Agile methods are implemented in various frameworks. XP [2]
and Scrum [40] are the most prominent implementations applied
in industry and academia. Those methodologies define practices
to assure compliance with the agile values as described in the
agile manifesto. Agile methods are mostly understood to support a
development process comprehensively from start to the final
stage. However, the individual practices can be classified accord-
ing to their main targets. Some practices are designed to structure
team processes and customer collaboration while other practices
focus on the quality of code and outcome.

Recently, several authors report on using agile methods in CS
education at university level. Braught et al. [7] promote the use of
agile methods because it helps female students to engage in pro-
gramming tasks through interaction with peers. Nagappan et al.
[34] highlight social experiences, learning processes, and quality
of code when using agile methods in CS1 courses. However, lit-
erature shows that there may be possible barriers hindering an
implementation of agile methods in university scenarios. Rico and
Sayani [37] present a study where they found that students had
already established their own approaches and habits for SD that
were opposing practices of agile methods. According to Rico and
Sayani it was almost impossible to convince the students to ad-
here to the introduced practices of agile methods. In this connec-
tion, they recommend to introduce agile methods as early as pos-
sible. Consequently, a benefit is assumed in the use of agile meth-
ods in school contexts. Literature on agile methods at university
levels is still discussing the possibility of conducting a fully-
fledged project management according to an implementation as
XP or Scrum. Some authors promote an almost complete imple-
mentation of XP (e.g. [28]), some recommend to use and adopt a
subset of practices (e.g. [8]), while others exclusively use one
practice (e.g. pair programming) to support computing education
(e.g. [7]). Schneider and Johnson [38] reviewed agile methods in
computing education and highlight the importance of applying
suitable practices according to their goals instead of fulfilling
complete implementation of agile methods. Accordingly, Hazzan
and Dubinsky [20] present ten reasons to consider agile methods
in computing education.

Yet, literature on agile methods in secondary computing educa-
tion is rare. Weigend [42] introduced elements of XP (user stories,
spikes, test driven development, refactoring, and big visible
charts) to provide a project-based iterative infrastructure that sup-
ports writing of high quality code. However, a sound methodol-
ogy for connecting the presented elements in projects was not
provided.

The work in hand is based on encouraging classroom experiences
presented by Göttel [18]. In various educational CS projects, agile
methods, such as pair programming, standup meetings, informa-
tive workspaces, and user stories supported students in their pro-
ject work and additionally helped students to discover social as-
pects of CS. This success provided our basis for developing a
comprehensive agile model for school projects in computing edu-
cation.

3.2 An Agile Model for Projects in
Computing Education (AMoPCE)
As discussed above, PBL represents a common teaching and
learning method in computing education. However, even if com-
mon models suggest a structure and requirements for school soft-
ware projects, methods are described insufficiently for the indi-
vidual phases. Agile methods and modern SD principles provide a
set of clearly described strategies that seems well suited for an
implementation in school contexts. As described in the agile
manifesto, they emphasize communication, visualization, team-
work and common goals. In the following, we want to introduce a
model for school software projects that builds on the character of
agile methods in order to address the problems outlined in section
2. It follows the agile manifesto by focusing on

1. Students and their interactions

2. Rapid success and working software

3. Collaboration in order to strive for a common goal over ful-
filling a contract

4. Responding to change and learning progress over following a
plan

The individual strategies and tools are illustrated in fig. 7 and will
be described below in an agile model for projects in computing
education (AMoPCE).

In this description we focus on processes and methods that are
central for the agile SD process. Additional pedagogical aspects
such as triggering students’ motivation or finding agreement in
choosing a project topic are not covered.

The process contains various techniques adapted from profes-
sional SD practices. They provide clear lines of action that can be
followed by the students (e.g. generating user stories, planning
poker, defining tasks). However, before applying them in a pro-
ject we suggest introducing and practicing each method. On the
other hand, an explorative learning approach is possible: The
methods describe the processes in such detail that appropriate
material can be created which allows students to learn and per-
form the processes independently.

The methods will be first discussed from a professional perspec-
tive3 and subsequently transferred in a way that they can be ap-
plied in classroom (italic text). Examples will illustrate the proc-
ess.

3.2.1 Preparation
Creating software requires competencies in programming and
using tools. It is the responsibility of the teacher to make sure that
the students have acquired the competencies needed for the soft-
ware project ahead or that they will be able to acquire them dur-
ing the project (e.g. with provided teaching material). Another
aspect considers establishing an appropriate infrastructure (see
[33] for further elaboration).

3.2.2 Ideas in
The initial steps of a SD process usually are devoted to require-
ments analysis listing possible features, approaches, and needs of

3 In order to maintain a consistent presentation, methods and prac-
tices described in this paper are based on [35], which may be
referred to for elaboration and additional information on modern
SD practices.

the target audience. This phase is based on interviews, observa-
tions, and brainstorming sessions with the customers.

Building upon ideas and interests of students is a central charac-
teristic of PBL. However, experience shows that students may not
easily come up with ideas that can be implemented in such a pro-
ject, especially at the first time. Therefore, an initial presentation
of possible projects and the use of creativity techniques (e.g.
brainstorming) are suggested. Resulting ideas shall be written
down on individual Post-Its or cards for each activity that the
software needs to provide (cp. fig. 2).

Fig 2. Post-its for recording ideas.

3.2.3 User Stories
User stories briefly describe features of a product that should be
available to the actual user. Each user story addresses a specific
activity of a user and is derived from the ideas of the requirements
analysis. They are written from the perspective of a customer.
User stories should easily fit on index cards and also be under-
stood by non-developers. They should provide additional space
for an estimation of the work effort.

In combination, user stories specify the entire intended product. A
final state and amount of user stories has to be accomplished in
agreement with the customer. Thereafter, stories are prioritized
together with the customer by sorting user stories according to the
importance of each story. Priorities are presented using incre-
menting numbers by powers of ten from 10 (most important) to
50 (least important).

Furthermore, the customer is asked to pick those stories that
should be available in the initially delivered outcome or rather
first major release. Consequently, discussion and reprioritizing
stories may be necessary considering the basic features wanted for
the first release.

User stories are created using various brainstorming techniques
and take account of domain specific needs, knowledge, and ap-
proaches of the actual users specified in the requirements analy-
sis.

A user story

- covers one activity that needs to be addressed

- represents the perspective of the customer

- is short, i.e. contains no more than three sentences

- does not use technical terms

- does not specify technology or tools

Fig. 3. Cards for user stories holding a title, a description, an
estimate for workload, and a priority. Estimates will be added

after completing the planning poker.

In professional SD projects one of the most important (and often
unsuccessful) tasks is to find out what the customer wants. User
stories provide a helpful way for achieving this goal. Since the
students are going to implement their own ideas in their software
projects, this goal does not apply. However, the team needs to
find an agreement on the requirements for the software. These
will be represented from a user’s perspective: User stories briefly
describe how a user interacts with the software. They can be de-
veloped from the previously recorded ideas. These need to be
analyzed to find out, which interaction is really going to happen.
This will be achieved by role playing and observation. Role play-
ing is suggested as an attractive method for computing education
to understand processes (cp. [4, 12, 14]). However, some of these
examples use role plays in awkward contexts. In contrast, by role
playing user interaction with the desired software system, stu-
dents use a method which is anchored in modern SD processes
and helps to identify relevant processes. The rules of the role play
are simple: One student pretends to be the software and reacts
accordingly. A sheet of paper may be used to illustrate the dis-
play. Another student takes the role of the user and instructs the
software about what he or she wants to do, according to the pre-
viously obtained ideas. The remaining students observe the situa-
tion carefully to understand details and constraints of the desired
product. The role play should be repeated several times with
changing actors until no more new requirements arise. With this
experience it should be easy to formulate the requirements from a
user’s perspective and write down the corresponding user stories
(cp. fig. 3). Finally, the user stories receive a value for their pri-
ority. Priorities can be determined as a team, since generally
agreement is quickly found.

Communication is an essential element of agile SD. Even if a set
of user stories will now describe the final goal, questions and
changes will appear in the following process. Since there is no
customer who can answer questions and make decisions in order
to clarify yet open questions, a group member needs to take over
this special role: the product owner. This position may be passed
around with each iteration.

3.2.4 Planning Poker
Planning poker is a hands-on method helping participants to esti-
mate time needed for the work packages and guarantees a fair and
comprehensible approach amongst all team members. Each par-
ticipant holds a deck of cards to estimate the workload of a user
story. There should be cards representing estimates in comprehen-
sible units (e.g. developer-days) and special cards allowing play-
ers to indicate a lack of information, a need for a break, and al-
ready finished functionalities as shown in fig. 4.

Fig. 4. Deck of cards used for the planning poker.

Each play round is devoted to one user story. A user story is
placed in the middle of the table by the dealer and all participants
place a card specifying their estimate face down on the table. All
played cards are turned at the same time. The dealer collects the
played cards and sums up the estimates trying to set up an average
estimate. The dealer should address outliers by asking for reasons
explaining fundamental differences in the estimates. Furthermore,
the dealer should reflect on average estimates referencing the
differences in the played cards. After each round the acquired
estimate is written on the card of the user story. Additionally, the
individual estimates are written on the back of the user story card
to keep track of the decision process.

For a student team it is one of the most difficult tasks to estimate
the workload and time demands of a given project due to a lack of
project experience. Additionally, very likely not all planning rele-
vant aspects are known at this point, learning processes will hap-
pen and changes may be necessary. Planning poker describes a
playful way for challenging all students of the team to engage in
the planning process by analyzing user stories and tasks, relating,
estimating, explaining and defending their calculations, thus
practicing their communication skills and ability to give and re-
ceive criticism.

For school software projects the same card values can be used as
in professional SD. However, since these projects comprise a
shorter working time, instead of days, 15 minute-periods seem to
be appropriate. Each student estimates the time he or she believes
he or she would need to implement the user story in focus. User
stories should be presented with decreasing priority. Discussion
of very divergent estimates will help resolving unspecified re-
quirements and assumptions. After the planning poker is finished,
the total workload for all user stories is divided by the number of
programmers or programming teams (if pair programming is
used) and compared with the time available. Unlike in profes-
sional SD, the priority is not to fulfill all requirements of the soft-
ware but it is indispensable to keep the time available. If there is
a major difference, e.g. more than 20 per cent, amount or com-
plexity of the user stories need to be modified.

Again, for planning poker one team member needs to be the
dealer. We suggest for this special role the position of a “team-
master”, who leads the planning poker as well as team meetings.
In the subsequent process this position also may be passed around
with each iteration.

3.2.5 Tasks
After the initial planning poker, user stories are broken down into
tasks. Usually each user story can be seen as a collection of tasks.
A task is a rough description of a work package that should be
done by a single developer. A task should have a unique self-
explanatory name and should indicate its priority. The workload

of each task should also be estimated by planning poker. After-
wards, task estimates are summed up to double check them with
the initial estimates on the corresponding user stories. Thus, these
estimates should not differ tremendously.

 While the user stories describe project goals from the perspective
of the user, the students now need to change their perspective and
look at them from a developer’s viewpoint. By dividing user sto-
ries into tasks, various design decisions need to be made. Experi-
enced programmers will now benefit from their competencies and
known best practices, less confident students at this point can
benefit and learn from team members, processes and team discus-
sion.

3.2.6 Iterative Development, Prototypes, and Mile-
stones
Agile processes are designed to provide short iterations that con-
stantly come up with working prototypes that can be used and
discussed with users or customers. This allows for rapid feedback
loops that help to uncover misunderstandings, to detect issues in
using the interface, and to adapt to new requests. An iteration is
supposed to be short and has to be balanced according to imple-
menting new features, fixing bugs, responding to change, and
considering group dynamics or individual demands. In profes-
sional contexts, iterations vary between one week (5 working
days) to one month (approximately 20 working days).

Iterations are planned in a team meeting by considering user sto-
ries’ priorities, estimates, and the intended duration of an itera-
tion. After deciding on the user stories to work on for the next
iteration, they are pinned on a project board including associated
tasks.

In school software projects, the planning of long development
processes is reported to be difficult. Also, teachers report issues
maintaining student motivation while they are not getting a grasp
of the product until the whole project is assembled. The learning
theory of constructionism emphasizes that learning happens espe-
cially felicitously in a context where learners are engaged with
creating and investigating a personal relevant product (cp. [35]).
Iterative development allows for creating a series of prototypes
that can be analyzed, examined and played with in a construction-
ist sense. Also, such a design of the development processes allows
for a higher flexibility in team organization and diversification
due to more frequently changing tasks. Hence, each iteration is a
mini-project containing each phase of the SD processes (require-
ments, design, code, test), but is easier to handle. This gives stu-
dents the opportunity to perform the whole process several times
within one project, to learn from and reflect on previous experi-
ences and to take over several tasks in the team (in comparison to
other project models, where tasks are more strictly divided
amongst students). Besides the iterations, which should not be

Fig. 5. Tasks for User Story “Control Lives”.

longer than one to two weeks (which equals 2-4 lessons), mile-
stones are used to structure the process and point out major
achievements within the project. We suggest identifying 2-3 mile-
stones for each project, representing versions of the final product
with increasing value. However, only the achievement for the next
milestone in the development is determined at a time. Milestones
can be used for presenting the project progress for the rest of the
class or teachers. Also, milestones should be positioned at times
when the project pauses and teacher input is planned. Goals for
the next milestone and the project progress are visualized at the
project board.

3.2.7 Project Board
Project boards visualize goals and status of a current iteration and
support target-oriented discussions. They present user stories and
tasks in different status areas. Project boards are updated and
discussed throughout the entire process. Thereby, it helps team
members to keep track of the progress of the design process: the
different areas of the board are used to present goals and accom-
plishments to the whole team. There are three main status areas:
to-do user stories with associated tasks for the current iteration,
tasks that are in progress, and completed tasks. Furthermore, there
is an area to store user stories that need to be reconsidered in a
future iteration. To provide a clear view, another area is reserved
for finished user stories, allowing to take off corresponding task
cards. Figure 6 presents an accordant project board.

Additionally, a burn-down chart is available on the project board.
The chart visualizes the working time left in an iteration and work
that needs to be done according to the task estimates. The chart is
constantly keeping track of the progress by plotting the remaining
sum of tasks at the end of a working unit.

Likewise, in a school software project all user stories with corre-
sponding tasks are collected and presented at the team’s project
board. The project board is the central organizational and infor-
mative workspace for the entire project and should be available
at all times, e.g. by placement at the classroom wall. It is also the
meeting point for the regular standup meetings.

3.2.8 Standup Meetings
Standup meetings provide a recurring fast and short update of the
efforts of the team: Each team member has to report on accom-
plished tasks, possible issues in accomplishing certain goals, and

a plan for the work day. Meetings are done while standing to
guarantee a fast and goal oriented session kicking off a workday
and should not exceed 5 to 15 minutes.

In school projects, standup meetings can provide an elegant way
for starting off a lesson or working day within a project by en-
couraging team communication, sustaining motivation and identi-
fying problems. The team gathers around the project board and
recalls the project status, success and problems of the last work-
ing session and the goals for the day. After each team member has
given a short statement the burn down chart is updated. If non-
minor problems are identified, a longer meeting may be sched-
uled.

3.2.9 Pair Programming
Pair programming ensures an elaborated coding style: A pair of
programmers uses a single programming environment for coding.
The person using the keyboard and mouse is adopting the role of
the “driver”. The driver is actually coding and asked to present his
or her ideas to the second programmer (the “navigator”) verbally.
Meanwhile, the navigator questions the coding outcomes, dis-
cusses possible misinterpretations, and seeks for alternative solu-
tions that are more straightforward by keeping in focus the overall
goals. The roles of driver and navigator are changed repeatedly
during a workday. Programming in pairs helps to detect possible
slips in the design and architecture of the code at early stages.
Furthermore, it helps programmers to build upon social interac-
tion uncovering misinterpretations of relations and intentions of
code parts.

In many schools, two students share one computer due to limited
hardware availability and hence often program in pairs. The agile
method of pair programming supports this practice and adds a
framework that encourages attention from both students, mutual
learning and a notion of programming as a social activity.

Fig. 7 illustrates the organization of a school software project
based on AMoPCE as described above. Other agile methods and
ideas may be included in such a school project as well, e.g. test
driven development, refactoring or “keep it simple”.

3.3 Focusing on Programming Style and Out-
come
Several agile practices may be applied in the process to bring
forward a high quality outcome. However, since these practices
are optional for project organization and partly depend on pro-
gramming environments, in the following they are only summa-
rized but not adapted for school software projects.

3.3.1 Test Driven Development
Test driven development replaces documentation and provides
criteria to evaluate the code solutions: Programmers define in-
tended functionalities by writing automatic tests covering all
states and the correctness of the accordant results. First reports of
using this method in secondary education have been published
(e.g. [10]).

3.3.2 Refactoring
Refactoring introduces the idea that every part of the code should
be reconsidered and changed if a more accurate solution can be
found: Developers should rewrite parts of code without adding
functionality when there is a more straightforward solution avail-
able that passes all automatic tests. Emphasizing this aspect may
raise students’ awareness of efficiency and for evaluating differ-
ent solutions.

Fig. 6. Project Board including a burn-down chart.

Fig. 7. Agile Model for Projects in Computing Education (AMoPCE).

3.3.3 Keep It Simple
This claim refers to code minimalism: each function should be
solved by minimal and straightforward code snippets to ensure an
elegant and readable code that is easy to maintain.

4. DISCUSSION
The proposed agile model for SD projects AMoPCE addresses a
majority of the previously identified problems. Agile practices fill
the learners’ gap between requirements and outcome by providing
clearly defined strategies for handling difficult planning tasks.
Based on the perception of PBL as a team activity, which is in
line with modern SD, a team size of 4-6 students is recommended.
Dividing the class into several teams, in comparison to having the
full class working on one project as proposed e.g. by Schubert and
Schwill [39], allows for addressing a broader range of topics,
hence it is easier to meet the interest of more students. Also, it
should be much easier to find agreement within smaller teams.

Adopting an iterative project design matches the formal circum-
stances of school projects. In most cases, projects will be worked
at along the regular school timetable, sometimes in a so-called
project week on several days. In both settings, pedagogical as-
pects of working in group settings, such as giving curricular input,
intermediate project presentations or discussing of common prob-
lem solving strategies, can be taken into account easier, since
meetings in plenum are part of the model. Correspondingly, pro-
jects are divided into mini-projects, which are easier to overview,
plan and understand; bureaucratic overhead is reduced. Class-
room-management aspects are addressed with professional prac-
tices such as standup meetings. This includes recalling of the
project status at the beginning of each lesson and quickly plan-
ning the individual and group activities for the day.

Within projects, ideas, students’ motivation, and skills change
over time. Due to the limited time available to work on the pro-
jects per week, this is especially very likely for school software
projects. Agile methods welcome changes and provide mecha-
nisms to adapt to them with often changing tasks and a straight-
forward implementation of PBL. Students’ confidence is ad-
dressed by increasing familiarity stemming from the iterative
character of the process.

In comparison to the ACMM, which provides solutions for teach-
ers’ difficulties that are grounded in teaching situations, the pro-
posed agile model provides solutions for students’ difficulties in
learning situations. This in return is expected to relieve the
teacher. Giving students clearly defined practices to manage their
development processes allows teachers to focus on supporting
elaboration and implementation of students’ ideas, thus changing
the teacher’s role from instructor to coach. This better meets the
demands of PBL. Additionally, it allows teachers to highlight
creativity and social aspects that are rarely seen in connection
with computer science (cp. [8, 29]). Applying an adapted SD
methodology in school that is also implemented by well known
large scale companies may help teachers and students to build an
adequate and appealing understanding of computer science rely-
ing on creativity, dynamic change, feedback, and soft skills.
These attributes may support an attractive notion of computer
science, as found in our first experimental settings with agile
methods in school projects [18] .

In summary, AMoPCE is suited for supporting the objectives of
PBL, for maintaining a professional orientation and for easing the
mentoring of software projects. However, in this model curricular
aspects such as content and size of a project are not explicitly
considered. Nevertheless, it provides the flexibility to fit into a
variety of possible scenarios. Evaluation and assessment aspects,

e.g. assessing individual achievement in comparison to group
achievement are not determined by the model. However, again
practices of SD appear to be adaptable and can be considered:
Frequently, agile development teams use self assessments and
subsequent peer reviews to verify individual workload and com-
mitment.

As outlined in section 3, there are further practices of agile meth-
ods that focus on the quality of the outcome: test driven develop-
ment, collective code ownership, refactoring, and keep it simple.
We acknowledge these practices to be also useful in educational
settings but we understand them to be highly dependant on fea-
tures and methodologies of the used programming environments
and tools (e.g. code repositories, automatic testing environments).

The use of agile practices in school SD projects has the potential
for replacing the so far predominantly used sequential model.
From discussions with teachers we know of the high interest, but
a lack of knowledge and resources concerning the use of agile
methods. This includes the demand for a revised project model.
With AMoPCE, as outlined in this article, we present a model
which explains ideas and realization possibilities of agile prac-
tices and which can be used as blueprint. In a next step of our
research the model will be applied in classroom settings and it
will be investigated, to which extend the expected benefits and
problem solutions will be approved in practice.

5. REFERENCES
[1] Barak, M., Waks, S. and Doppelt, Y. (2000). Majoring in

technology studies at high school and fostering learning.
Learning Environments Research 3(2): 135-158.

[2] Beck, K. and Andres, C. (2004). Extreme Programming Ex-
plained: Embrace Change (2nd Edition).

[3] Beck, K., Beedle, M., et al. (2001). Manifesto for agile soft-
ware development. The Agile Alliance: 2002-04.

[4] Bergin, J. (2000). The Object Game. An Exercise for Study-
ing Objects. Online at:
http://csis.pace.edu/~bergin/patterns/objectgame.html (visited
01.07.2012).

[5] Blumenfeld, P. C., Soloway, E., et al. (1991). Motivating
Project-Based Learning: Sustaining the Doing, Supporting
the Learning. Educational Psychologist 26: 369-398.

[6] Blumenfeld, P. C., Soloway, E., et al. (1991). Motivating
project-based learning: Sustaining the doing, supporting the
learning. Educational Psychologist 26(3-4): 369-398.

[7] Braught, G., Wahls, T. and Eby, L. M. (2011). The Case for
Pair Programming in the Computer Science Classroom.
Transactions on Computing Education 11: 2:1--2:21.

[8] Caspersen, M. E. and Kölling, M. (2009). STREAM: A First
Programming Process. Transactions on Computing Education
9: 4:1--4:29.

[9] Chevallard, Y. (1988). On didactic transposition theory:
Some introductory notes. In Proceedings of the International
Symposium on Research and Development in Mathematics,
Bratislava, Czechoslavakia.

[10] Christopher, G. J. (2004). Test-driven development goes to
school. J. Comput. Small Coll. 20(1): 220-231.

[11] Dewey, J. and Kilpatrick, W. H. (1935). Der Projekt-Plan:
Grundlegung und Praxis, Hermann Böhlaus Nachfolger.

[12] Diethelm, I. (2007). Strictly models and objects first - Unter-
richtskonzept und -methodik für objektorientierte Modellie-
rung im Informatikunterricht. Kassel, Universität Kassel.

[13] Fincher, S. and Petre, M. (1998). Project-based learning prac-
tices in computer science education. In Proceedings of the
IEEE Frontiers in Education Conference (Tempe, Arizona).

[14] Fothe, M. (2007). Algorithmen in spielerischer Form. In
Proceedings of the Praxisband der GI-Fachtagung Informatik
und Schule.

[15] Frey, K. (1983). Die sieben Komponenten der Projektmetho-
de - mit Beispielen aus dem Schulfach Informatik. LOG IN
3(2): 16-20.

[16] Frey, K. and Schäfer, U. (1982). Die Projektmethode. Wein-
heim [a.o.] Beltz.

[17] Gal-Ezer, J., Beeri, C., et al. (1995). A high school program
in computer science. Computer 28(10): 73-80.

[18] Göttel, T. (2012). The image of Computer Science and social
aspects of modern software development processes in school
contexts. Hamburg, University of Hamburg.

[19] Hartmann, W., Näf, M. and Reichert, R. (2006). Informatik-
unterricht planen und durchführen, Springer.

[20] Hazzan, O. and Dubinsky, Y. (2007). Why Software Engi-
neering Programs Should Teach Agile Software Develop-
ment. SIGSOFT Software Engineering Notes 32: 1-3.

[21] Hazzan, O., Dubinsky, Y. and Meerbaum-Salant, O. (2010).
Didactic transposition in computer science education. ACM
Inroads 1(4): 33-37.

[22] Highsmith, J. and Cockburn, A. (2001). Agile Software De-
velopment: The Business of Innovation. Computer 34: 120-
122.

[23] Humbert, L. (2005). Didaktik der Informatik, Teubner.
[24] Koerber, B. (1992). Die Angst des Lehrers vorm Projektun-

terricht. LOG IN 12(5/6): 3.
[25] Krajcik, J. S., Czerniak, C. and Berger, C. (1999). Teaching

children science: A project-based approach, McGraw-Hill
Boston, MA.

[26] Larman, C. and Basili, V. R. (2003). Iterative and Incre-
mental Development: A Brief History. Computer 36: 47-56.

[27] Layman, L., Williams, L. and Cunningham, L. (2004). Ex-
ploring Extreme Programming in Context: An Industrial Case
Study. Proceedings of the Agile Development Conference.
Washington, DC, USA, IEEE Computer Society: 32-41.

[28] Loftus, C. and Ratcliffe, M. (2005). Extreme Programming
Promotes Extreme Learning? Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in com-
puter science education. New York, NY, USA, ACM: 311-
315.

[29] Maass, S. and Wiesner, H. (2006). Programmieren, Mathe
und ein bisschen Hardware... Wen lockt dies Bild der Infor-
matik? Informatik-Spektrum 29(2): 125-132.

[30] Magenheim, J., Nelles, W., et al. Competencies for informat-
ics systems and modeling: Results of qualitative content
analysis of expert interviews. In Proceedings of. IEEE.

[31] Mann, C. and Maurer, F. (2005). A Case Study on the Impact
of Scrum on Overtime and Customer Satisfaction. Proceed-
ings of the Agile Development Conference. Washington, DC,
USA, IEEE Computer Society: 70-79.

[32] Meerbaum-Salant, O. and Hazzan, O. (2009). Challenges in
Mentoring Software Development Projects in the High
School: Analysis According to Shulman. Journal of Com-
puters in Mathematics and Science Teaching 28(1): 21.

[33] Meerbaum-Salant, O. and Hazzan, O. (2010). An Agile Con-
structionist Mentoring Methodology for Software Projects in
the High School. Transactions on Computing Education 9:
21:1--21:29.

[34] Nagappan, N., Williams, L., et al. (2003). Improving the CS1
Experience with Pair Programming. ACM SIGCSE Bulletin
35: 359-362.

[35] Papert, S. and Harel, I. (1991). Situating Constructionism.
Constructionism. S. Papert and I. Harel. Norwood, N.J.,
Ablex Publishing.

[36] Pilone, D. and Miles, R. (2008). Head first software devel-
opment, O'Reilly Media, Inc.

[37] Rico, D. F. and Sayani, H. H. (2009). Use of Agile Methods
in Software Engineering Education. Proceedings of the 2009
Agile Conference. Washington, DC, USA, IEEE Computer
Society: 174-179.

[38] Schneider, J.-G. and Johnston, L. (2005). eXtreme Program-
ming: Helpful or Harmful in Educating Undergraduates?
Journal of Systems and Software 74: 121-132.

[39] Schubert, S. and Schwill, A. (2011). Didaktik der Informatik,
Springer.

[40] Schwaber, K. and Beedle, M. (2001). Agile Software Devel-
opment with Scrum.

[41] Tucker, A., Deek, F., et al. (2003). A model curriculum for
K-12 computer science: Final report of the ACM K-12 task
force curriculum committee. New York, NY: The Associa-
tion for Computing Machinery.

[42] Weigend, M. (2005). Extreme Programming im Klassen-
raum. In Proceedings of the INFOS 2005 - 11. GI-
Fachtagung Informatik und Schule (Dresden, Germany,
2005). GI-Edition - Lecture Notes in Informatics (LNI).

	1. INTRODUCTION
	2. PROJECTS IN EDUCATION
	2.1 Project Based Learning
	2.2 PBL in Secondary Computing Education
	2.3 A Professional Perspective
	2.4 A Teachers’ Perspective
	2.5 A Learners’ Perspective
	2.6 Didactic Transposition for Project Methodologies

	3. AGILE PROJECTS IN COMPUTING EDUCATION
	3.1 Agile Methods in Professional and Educational Settings
	3.2 An Agile Model for Projects in Computing Education (AMoPCE)
	3.2.1 Preparation
	3.2.2 Ideas in
	3.2.3 User Stories
	3.2.4 Planning Poker
	3.2.5 Tasks
	3.2.6 Iterative Development, Prototypes, and Milestones
	3.2.7 Project Board
	3.2.8 Standup Meetings
	3.2.9 Pair Programming

	3.3 Focusing on Programming Style and Outcome
	3.3.1 Test Driven Development
	3.3.2 Refactoring
	Keep It Simple

	4. DISCUSSION
	5. REFERENCES

