
It’s not Magic After All - Machine Learning in
Snap! using Reinforcement Learning

Sven Jatzlau1
Computing Education Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany
sven.jatzlau@fau.de

Tilman Michaeli1
Computing Education Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany

tilman.michaeli@fau.de

Stefan Seegerer1
Computing Education Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany

stefan.seegerer@fau.de

Ralf Romeike
Computing Education Research Group

Freie Universität Berlin
Berlin, Germany

ralf.romeike@fu-berlin.de

Abstract—The societal relevance of artificial intelligence is
growing rapidly. Advances are primarily driven by machine
learning techniques. Recently, many educational tools for teach-
ing AI have been introduced, allowing the user to implement AI
features within pedagogical programming environments. How-
ever, many of these existing approaches share a common trait:
the implementation of the underlying AI framework remains
a black box, where external API calls or servers handle the
actual computing. For the user, this typically means there is no
chance to “see inside” the implementation. As a result, users
often cannot gain a deeper understanding of how the “computer
is learning”. In this paper, we propose design principles for
a framework in order to break open that black box. These
design principles are implemented in the first part of SnAIp, a
project aimed at enabling Machine Learning within Snap!. The
focus of this part is using Reinforcement Learning within Snap!
games. The corresponding framework enables constructionist
learning and is implemented entirely in Snap!, which allows for
a high degree of transparency and tangibility. Furthermore, we
present a curriculum for Reinforcement learning using the SnAIp
framework. With this, we outline a way to address ML in the
classroom using block-based languages, while enabling the all-
important “look behind the scenes”.

Index Terms—AI, education, Snap!, block-based, program-
ming, machine learning

I. INTRODUCTION

With the growing societal relevance of artificial intelligence
(AI), driven primarily by advances in machine learning (ML),
AI is now also discussed in pedagogical contexts (e.g. [8],
[12], [16]). Consequently, AI is also featured in international
curricula (e.g. USA [3] or China [21]) with machine learning
being an important aspect.

Block-based languages seem particularly promising for edu-
cational settings: not only do they lend themselves to a simple
introduction to programming, they enable complex, high-level
projects, as well [9]. For this reason, they seem particularly
suitable for ML-frameworks to be used in classroom settings.

1These authors contributed equally to this work.

Many of the existing frameworks are aimed at novices and
open up a simple and intuitive way for all learners to un-
derstand ML concepts – without the hurdle introduced by
programming [10].

However, many existing approaches share a common trait:
the implementation of the underlying AI framework remains a
black box. In many cases, this is because internally, the frame-
works rely on external API calls or servers to handle the actual
computing. The extent to which a user can “look inside” is
therefore extremely limited. As a result, learners often cannot
gain a deeper understanding of the actual ML process. In order
to eventually enable these learners to analyze the effects AI
has on our society in a competent way, understanding ML on
a fundamental level is essential.

This paper presents design principles for ML-frameworks
suitable for classrooms, as well as an outline of the Reinforce-
ment Learning part of SnAIp, which incorporates these design
principles. SnAIp is based on an implementation entirely in
the Snap!-environment to enable constructionist learning by
“breaking open the black box”. Finally, we present a corre-
sponding curriculum to incorporate Reinforcement Learning
into the classroom.

II. RELATED WORK

Recently, numerous tools have been introduced to allow
learners to use machine learning in programming. A large
number of these tools use block-based languages. A popu-
lar example is the British Machine Learning for Kids [13].
Machine Learning for Kids provides an online platform that
supports Supervised Learning, allowing the Computer to rec-
ognize text, images, sets of numbers, or sounds within Scratch
projects. The user needs to provide training data, while the
learning process is done on external servers.

Williams et al. introduced a hands-on toolkit called PopBots
that focuses on Pre-K and Kindergarten children [19]. PopBot
builds on the same blocks as ScratchJr and provides teaching



materials for Knowledge-based Systems, Supervised Learning,
and Generative Music.

Druga introduced Cognimates, a framework for learning
how to build games, program robots, and train AI models [5].
The focus of this framework is on the interaction with social
robots, programming them, and training them [6], [7], [18].
The learning process is again hidden from the user, instead
taking place on external servers.

Kahn et al. developed a framework for AI programming
in Snap! [11] named ecraft2learn. This framework provides a
library including many different AI-related blocks that enable
the user to experiment with a broad range of AI concepts
within the Snap!-environment, including image recognition,
text recognition, and more. The blocks merely offer an in-
terface for the underlying API. Internally, the framework
then utilizes APIs or server-based services for the actual
computation.

In summary, there are several approaches aimed at making
Machine Learning accessible for all groups of learners. Most
educational tools focus upon Supervised Learning (one of
the three paradigms of machine learning algorithms) due to
the paradigm’s widespread distribution and common examples
such as image recognition. These approaches incorporate the
usage of this Machine Learning paradigm into supporting a
constructionist style of learning, but they lack the possibility to
explore how these learning processes take place. The Machine
Learning happens out of the user’s sight, e.g. with an API call
or a JavaScript function. As a result, ML remains a magical
mystery.

III. DESIGN PRINCIPLES FOR MACHINE LEARNING IN
BLOCK-BASED LANGUAGES FOR LEARNERS

As outlined above, existing materials focus more on using
pre-compiled APIs for ML without the user having to, or being
able to, visualize and modify the underlying algorithm. By
contrast, our approach aims to emphasize the actual implemen-
tation by opening up the black box, aligns with constructionist
learning theory [14], and embodies the following design
principles:

• Look behind the scenes: Instead of only applying
libraries or making API calls which “do the magic”, users
should be able to look into the black box, and even make
adaptations to the ML algorithms based on their needs –
at least to some extent. To this end, languages such as
JavaScript should be avoided completely if possible.

• Everything inside the tool: Many other systems need
extra services on which models are trained or rely on
API calls in the background. Doing so tends to reinforce
the notion of block-based languages being “learning lan-
guages”, and if the goal is to do “real programming”, they
are not sufficient. Therefore, to contradict this perception,
everything should work within the framework.

• Useful projects over learning projects: according to
the constructionist learning theory [14], users should be
able to create their own, personally-meaningful projects
and use the system to enrich them. This poses a contrast

assess
state

select &
execute
action 1

111

receive
reward

learn

1 2 3

4

Fig. 1. The agent’s RL loop.

to “learning projects”, where, often, artificial problems
and examples are chosen, because they are suitable for
visualizing certain concepts.

• Models as artifacts: With block-based environments that
allow users to store and save variables locally, models
can become even more concrete, which supports the
constructionist idea of artifacts as tangible results. This
allows several new and interesting ways to integrate these
ideas into the classroom, i. e. as a competition for students
to compare their models, discuss, and learn from each
other.

SnAIp follows these design principles. It is intended for use
in high school classrooms (ages 14 and older) and has been
piloted with a year ten class. While there are many approaches
to Supervised Learning, for Reinforcement Learning (RL),
another one of the three paradigms of ML, suitable approaches
and tools are missing. As games in particular are a common
application of block-based languages [20], applying RL to
Snap! seems promising. Due to the parallels between human
learning and RL, the first part of SnAIp focuses on RL.

IV. SNAIP: REINFORCEMENT LEARNING IMPLEMENTED IN
SNAP!

A. Reinforcement Learning and Q-Learning

Reinforcement learning is a paradigm of machine learning
inspired by psychology: The agent learns through reward and
punishment. It learns to master a certain task autonomously
through interaction with its environment by attempting to
maximize the total reward [1]. Classic arcade video games
are a popular way to develop, test, and explore RL algorithms
(e.g. [2]). At its core, the agent in RL follows the learning
loop depicted in figure 1.

For SnAIp, we use an RL-algorithm called Q-Learning [17].
This algorithm generates a Q-table that the agent uses to find
the best action for a state. The Q-value in the Q-table indicates
the reward to be expected for carrying out an action in the
current situation. By associating a certain state with a certain
reward, the agent learns (= the probability of showing this
behavior again increases).



Fig. 2. Sample script for an agent.

Fig. 3. Implementation of Create Model.

B. The SnAIp-framework

A learning agent can be realized in SnAIp in a simple
and intuitive way by implementing the learning loop in the
corresponding sprite (for a sample implementation where an
agent is jumping over rolling barrels see figure 2). Before the
learning loop can be initiated, an underlying data structure is
needed. For this purpose, the first block (displayed in figure
3) simply creates the model, which consists of the Q-Table
(initially an empty list), and the parameters learning rate,
discount factor, a random factor, and the list of possible
actions the agent can choose from.

Afterward, the agent follows the previously-specified learn-
ing loop: In step 1, the current state is assessed, in the example
the agents distance to the barrel. Next, the best-action-block
is used and the Q-values for the current state are retrieved
from the model. With a certain probability (random factor) a
random action is executed, i. e. a random element from the list
of available actions is returned. In all other cases, the index
of the highest value in the row is searched for. This entry
represents the most positively evaluated action for this state.
In case the maximum is 0, the algorithm shows a random
action again. Essentially, this is a simple table look up.

In step 3, the reward is computed, based on the outcome
of the action. Afterward, the actual learning takes place: the
“update model”-block updates the Q-Table by applying the
reward to the actions performed and considering an estimation
of future Q-values, resulting in new values for this particular
state. For future situations, this means the agent will be more
likely to show positively reinforced behavior(see figure 5).

Fig. 4. Implementation of the block to retrieve the best action.

Fig. 5. Implementation of the block that updates the Q-Table.



Fig. 6. Q Table for easy exploration in Snap!.

As per our design principles outlined above, all behavior is
implemented in blocks within Snap!. There are no wrappers
for external JavaScript code or server calls.

We chose Q-Learning for its speed, as – for small problem
spaces, – training can be very fast: depending on the selected
state description, effects can become visible in less than three
minutes. With time often being a crucial resource in classroom
settings, Q-Learning seems particularly suitable. In addition,
the Q-Learning algorithm can not only be easily understood
and visualized by using a table (where the states and Q-
values for the respective actions are stored), but can also
be implemented by the students themselves. However, this
approach also has limitations: The speed at which the agent
learns the desired behavior depends on the number of different
possible states. If the number of states is too high, and cannot
be sensibly limited because the example is too complex, the
example is not suitable for classroom settings – the learning
process would simply take too long for a single lesson.

V. SnAIp IN THE CLASSROOM

While the SnAIp framework can be used individually, it
can also be incorporated into a comprehensive curriculum. In
the following, we will describe our approach on how to use
Reinforcement Learning in Snap! within a curriculum. The
curriculum is intended for use in upper high school classrooms
(ages 14 and older) and roughly divided into 4 parts:

a) What is Reinforcement Learning: For the introduction
of Reinforcement Learning without a computer, we used an
Unplugged activity to introduce the underlying concept and
the learning loop. In this activity, two students each play a
game of Hexaspawn against each other [4].

b) Getting started with RL in Snap!: The next step is to
help a monkey-agent learn and support him in his banana hunt.
This task is introduced with a puzzle activity: the students
receive a template for the game Banana Hunt. It contains all
the relevant blocks for the self-learning agent – but not in the
correct order. The students are asked to put them in the right
order. Afterward, they explore the program and describe how
the agent learns.

Fig. 7. Coding cards used in the phase Pimp my Game.

c) Pimp my Game: The next step for the students is to
add RL to their own games. In principle, RL can be applied
to any game. However, there are some rules and restrictions
for selecting an example for use in a regular lesson (primarily
motivated by time constraints). Examples that are particularly
suitable for use in class include games like Breakout, Pong or
Flappy Bird. Coding Cards, based on Scratch Cards [15], are
available as supporting material (see 7).

d) Behind the Scenes: The next step takes a closer look
at how the RL concept is implemented with Q-Learning on a
technological level. The students are instructed to view the
table that represents what has been learned (see figure 6).
Students are encouraged to observe how the values change
over time. Building upon that, students can fully grasp the
underlying algorithm and make adjustments and optimizations.
This phase highlights the advantages of using Snap! for the
entire implementation: every block can be inspected, every
variable can be monitored, and because the framework is made
with blocks, the flow of the entire program is made visible and
tangible.

VI. CONCLUSION

In summary, we propose a way to address ML by using
block-based languages while enabling the important “breaking
open the black box”. Furthermore, we provide a comprehen-
sive curriculum for RL in Snap! that supports teachers in
incorporating these concepts into the classroom.

By being built entirely in Snap!, our framework enables a
look into the blocks. It emphasizes a constructionist perspec-
tive, as users can enrich their own games and projects with
RL. Furthermore, we avoid using external libraries or servers
– everything is done right there, in the Snap! window on the
user’s PC. As a result, learners can gain a deeper understanding
of how ML actually learns and are able to analyze the effects
AI has on our society in a competent way.

In the next phase of the development of SnAIp, we intend
to transfer the aforementioned design principles to other
paradigms of ML, thereby providing additional ways for
learners to engage with and understand other major concepts
of ML.



REFERENCES

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[2] Luis Carlos Cobo, Peng Zang, Charles Lee Isbell Jr, and Andrea Lockerd
Thomaz. Automatic state abstraction from demonstration. In Twenty-
Second International Joint Conference on Artificial Intelligence, 2011.

[3] CSTA. About the CSTA K-12 computer science standards, 2017.
[4] Paul Curzon and Peter W McOwan. The sweet learning computer, 2016.
[5] Stefania Druga. Growing up with AI: Cognimates: from coding to

teaching machines. PhD thesis, Massachusetts Institute of Technology,
2018.

[6] Stefania Druga, Randi Williams, Cynthia Breazeal, and Mitchel Resnick.
Hey google is it ok if i eat you?: Initial explorations in child-agent
interaction. In Proceedings of the 2017 Conference on Interaction
Design and Children, pages 595–600. ACM, 2017.

[7] Stefania Druga, Randi Williams, Hae Won Park, and Cynthia Breazeal.
How smart are the smart toys?: children and parents’ agent interaction
and intelligence attribution. In Proceedings of the 17th ACM Conference
on Interaction Design and Children, pages 231–240. ACM, 2018.

[8] Clint Andrew Heinze, Janet Haase, and Helen Higgins. An action
research report from a multi-year approach to teaching artificial in-
telligence at the k-6 level. In First AAAI Symposium on Educational
Advances in Artificial Intelligence. AAAI Press, 2010.

[9] Sven Jatzlau and Ralf Romeike. How High is the Ceiling? Applying
Core Concepts of Block-based Languages to Extend Programming Envi-
ronments. In Egl Jasut Valentina Dagien, editor, Constructionism 2018:
Constructionism, Computational Thinking and Educational Innovation:
conference proceedings, pages 286–294, 2018.

[10] Ken Kahn, Rani Megasari, Erna Piantari, and Enjun Junaeti. Ai
programming by children using snap! block programming in a devel-
oping country. EC-TEL Practitioner Proceedings 2018: 13th European
Conference On Technology Enhanced Learning, 2018.

[11] Ken Kahn and Niall Winters. Child-friendly programming interfaces to
ai cloud services. In European Conference on Technology Enhanced
Learning, pages 566–570. Springer, 2017.

[12] Martin Kandlhofer, Gerald Steinbauer, Sabine Hirschmugl-Gaisch, and
Petra Huber. Artificial intelligence and computer science in education:
From kindergarten to university. In 2016 IEEE Frontiers in Education
Conference (FIE), pages 1–9. IEEE, 2016.

[13] Dale Lane. Explaining artificial intelligence. Hello World, 4, 2018.
https://helloworld.raspberrypi.org/issues/4.

[14] Seymour Papert and Idit Harel. Situating constructionism. pages 1–13,
1991.

[15] Natalie Rusk and other members of the Scratch Team. Scratch Coding
Cards: Creative Coding Activities for Kids. No Starch Press, 2017.

[16] David Touretzky, Christina Gardner-McCune, Fred Martin, and Deborah
Seehorn. Envisioning AI for K-12: What should every child know about
AI? In “Blue sky talk” at the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI-19), 2019.

[17] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[18] Randi Williams, Christian Vázquez Machado, Stefania Druga, Cynthia
Breazeal, and Pattie Maes. My doll says it’s ok: a study of children’s
conformity to a talking doll. In Proceedings of the 17th ACM Conference
on Interaction Design and Children, pages 625–631. ACM, 2018.

[19] Randi Williams, Hae Won Park, Lauren Oh, and Cynthia Breazeal. Pop-
bots: Designing an artificial intelligence curriculum for early childhood
education. The Ninth Symposium on Educational Advances in Artificial
Intelligence, 2019.

[20] Amanda Wilson, Thomas Hainey, and Thomas M Connolly. Using
scratch with primary school children: an evaluation of games constructed
to gauge understanding of programming concepts. International Journal
of Game-Based Learning (IJGBL), 3(1):93–109, 2013.

[21] Yanfang Yu and Yuan Chen. Design and development of high school
artificial intelligence textbook based on computational thinking. Open
Access Library Journal, 5(09):1, 2018.


