
Starting out with Projects - Experiences with Agile
Software Development in High Schools

Petra Kastl
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen

petra.kastl@fau.de

Ulrich Kiesmüller
Simon-Marius-Gymnasium
Simon-Marius-Straße 3,
91710 Gunzenhausen

kiesmueller@simon-marius-
gymnasium.de

Ralf Romeike
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen

ralf.romeike@fau.de

ABSTRACT
School software projects, as they are common e.g. in German CS
classes, traditionally apply inflexible process models, mostly an
adapted waterfall model. Typically, such projects are conducted at
the end of a school year. In this paper we pursue the question, if and
how changing process model and time may help bringing the ad-
vantages of project based learning into play. We describe and com-
pare practical experiences of a study with 140 students, considering
four different contexts. By applying agile methods, flexibility was
gained. The evaluation of the different implementations results in a
more holistic and comprehensive view of projects in CSE.

CCS Concepts
• Social and professional topics~Software engineering educa-
tion • Social and professional topics~K-12 education

Keywords
Agile methods; Projects in computer science education; Secondary
computer science education.

1. INTRODUCTION
With the growing importance of computer science (CS) in schools
around the world, methods and strategies for teaching CS in the
classroom are being discussed increasingly. Even though there is
mutual agreement that classroom software projects play a crucial
role for teaching and facilitating an appropriate and attractive no-
tion of CS, conducting software projects in schools remains a chal-
lenge: In Germany, projects typically are conducted at the end of a
school year, when the students have acquired the competencies nec-
essary for working on their project independently. This comes with
the drawback that the pedagogical advantages of projects did not
come into play until then. Also, at the end of the school year, time
issues may force the teacher to shorten the project or lead to pro-
jects remaining unfinished. Additionally, traditional methods for
school software projects suggest applying quite inflexible pro-
cesses such as the waterfall model. However, in school flexibility
is important in order to cope with the heterogeneity of contexts and
the objectives of projects [11]. In this paper we describe lessons

learned from four case studies with 140 students in total, from three
different federal states of Germany, with the aim of addressing the
aforementioned issues.

The interventions we describe and reflect on are designed and im-
plemented within a design-based research process aiming to refine
the theory of agile projects in CSE, which is outlined in [8]. A cen-
tral aspect of the process is the close collaboration with teachers.

They contribute their practical expertise, i.e. their pedagogical con-
tent knowledge (PCK), by adapting the agile framework to the in-
dividual needs of their context. All teachers participated in the pro-
ject because they saw room for improvement in their so-far water-
fall-model based software projects. The problems encountered by
the teachers are discussed in [8]. The analysis of their observations
and experiences may help to understand if, how, when and why ag-
ile projects can support the objectives of project-based learning
(PBL) better. Based on a qualitative analysis of the material of the
initial iteration of the design-based research process, preliminary
findings support the assumption that the emphasis on self-orga-
nized and outcome oriented effort, as well as communication, co-
operative work and learning supports students’ aim to acquire, ap-
ply and enhance a variety of subject-related, methodological and
social competencies [8]. This practical report will especially outline
the experiences providing answers to the questions why a flexible
process is important as well as what the effects of conducting pro-
jects early in the learning process are. In addition, the design deci-
sions and the evaluation and reflection of the different implemen-
tations will be analyzed with respect to the concept and attributed
value of agile school software projects by teachers and learners.

In the next section, we outline and discuss traditional arguments
and objectives of projects in CSE which are relevant to the design
of the intervention. After that we describe the design and the course
of a project which is conducted with programming novices and lasts
eight months. The intervention facilitates a steady and well observ-
able development of professional, social and organizational skills
during the project. In section 4 we supplement this approach with
further examples with slightly different objectives concerning pro-
gramming novices and agile projects. Finally, we reflect and dis-
cuss the different approaches as well as the practical experiences.

2. PROJECTS IN CS EDUCATION
Projects traditionally are considered relevant in CSE, typically re-
lying on professional software development practice [6, 7, 11].
However, projects in CSE are also challenging, as they require a
variety of professional skills on many different levels. Therefore,
they customarily are scheduled late in the learning process, when
the students are expected to be confident in necessary skills such as
programming. The objectives of said projects mainly focus on the
application of existing professional skills: Students use analysis,
problem-solving, design and implementation techniques. They

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WiPSCE '16, October 13 - 15, 2016, Münster, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4223-0/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2978249.2978257

60

carefully plan their teamwork and they structure their course of ac-
tion based on their professional knowledge by applying a well-es-
tablished process model. The most common model used in Ger-
many is an adapted waterfall model as outlined by the Swiss edu-
cationalist Karl Frey [6]. In addition to pedagogical project objec-
tives, students are expected to gain insight into aspects central to
the creation of complex software systems. With respect to problems
that teachers and students experience with such linear process mod-
els in high school projects, Romeike and Göttel [13] proposed an
Agile Model for Projects in Computing Education (AMoPCE) in-
cluding adapted agile practices and artefacts (see fig. 1). For the
design, the authors discussed agile artefacts and practices from a
pedagogical perspective.

Similarly, more recent curricula and publications also no longer
recommend traditional linear approaches for projects in high
schools. Rather, they suggest computer program design as an itera-
tive and collaborative process [1, 2]. Students are supposed to so-
licit, evaluate and integrate peer feedback to develop or refine so-
lutions and use techniques like pair programming and code reuse
[1, 7, 11]. Also, pedagogical objectives, e. g. the enhancement of
soft skills, especially communication, self-organization and the
ability to work in teams, are emphasized [1, 3].
In the context of empirical software engineering there are two dis-
cussions we consider relevant for our work. Firstly, based on prac-
tical experience from an industry perspective agile practices and
artefacts are assessed in order to identify those beneficial for project
success [12]. Secondly, studies analyze the experiences in order to
identify aspects which are relevant for the design of process adap-
tations [4], as there is general agreement that there is not the one
framework that fits all projects. Also, best practice examples are
considered to be important.

By now there is also a great number of publications discussing the-
oretical and practical aspects of agile approaches in the context of
educational software development projects [5, 7, 10]. Studies refer
to the traditional capstone projects as well as to projects earlier in
the learning process applying different agile approaches and aiming
for different skills. They mainly report positive experiences regard-
ing the students’ attitude and learning progress and varying results
concerning experiences with different agile practices. However,
these studies are conducted from an academic point of view focus-
ing on still different contexts and goals than projects in secondary
CS education. We are not aware of relevant publications that em-
phasize aspects and characteristics of agile approaches and PBL in
the heterogeneity of CS high school projects.

1 A user Story describes a small functionality from the customers’

point of view.

In all interventions described here, projects are conducted in regular
lessons with programming novices early in the year. However, the
projects’ individual designs vary considerably. They focus on dif-
ferent competences and on different objectives, as we will explain
in the next section.

3. PROJECTS EARLY IN THE LEARNING
PROCESS – FOUR CASE STUDIES
3.1 Project Set-Up and Data Collection
In the following chapters we report on the practical experiences and
findings of four different experiments exploring the application of
project-based learning early in the learning process. The interven-
tions have been put into practice for up to three years by now. The
teachers explained their observations and experiences in semi-
structured interviews [cf. 8]. Further material is used for the evalu-
ation in section 4.2. Photos of the project boards document the pro-
gress of the projects. Also they document the learning progress as
the tasks gradually become more complex. Moreover, there is the
code which shows the programming concepts and structures ap-
plied by the students. Finally, there is data of the students who
elected CSE as one of their next year’s subjects from the last five
years.
Classes consist of about 20 to 32 students between 14 and 18 years
old and there is at least one lesson (90 minutes) per week. The stu-
dents’ prior knowledge concerning objects, algorithms or program-
ming is minor to non-existent.

3.2 Eight-Month PBL with Agile Methods
In this class students learn the basics of static and dynamic object-
oriented modelling and programming with Java by using BlueJ.
The motivation of the teacher to change the teaching methodology
arose from the experience that most students were not able to create
an interesting and exciting product when the project was conducted
at the end of the first learning year due to limited time. Also, soft
skills and organizational skills could not be fostered sufficiently in
such a short period of time, even though students will urgently need
these skills in their future qualification period. Therefore, the
teacher extended the project duration, still applying the waterfall
model. However, at this early point the students’ professional
knowledge was far too poor to self-organize the planning of their
project. They now strongly depended on the teacher’s support,
which led to an exhausting situation for the teacher and was dis-
couraging for the students, who complained about long waiting
times. Moreover, often the input of new theoretical knowledge did
not meet the actual needs of many students. Thus, his motivation to
apply agile methods was to provide students with a structure that
enables them to self-organize their learning process as well as their
project-work. In the following paragraphs we will outline key
teaching practices that allow the teacher to achieve this goal.
Teaching practice: Preparing the project
Before the full project started, the students worked on small prob-
lems in micro-projects. These problems were designed in such a
way that the user stories1, tasks2 and fragments of code could be
reused in the later projects with only little modifications. Also,
other essential practices and techniques of agile project manage-
ment were introduced.

The problems, which in the preparation phase were given by the
teacher in the form of user-stories, gradually became more “open”.

2 Tasks describe what needs to be done to realize a user story from
the developer’s perspective.

Figure 1. Model for agile projects in CSE.

61

This was to make sure that students slowly get familiar with the
frequently necessary change of perspective. For example, a user-
story contained the following ambiguous task: “Draw a circle that
is moving in a circle”. A look at the teams’ different interpretations
and implementations offered interesting points for discussion and
reflection (see fig. 2). There were simple solutions, which could be
implemented quickly, and more complex ones, which took time and
required more knowledge. Later, in the full project the students will
be their own “customers” and will plan and prioritize features.
Therefore, they learned about aspects of time and knowledge and
can use these arguments for better decision making later on.

After about ten weeks the students were able to create simple UML
class-diagrams and implement them, and they also used control
structures in their Java code. They were familiar with the tools and
some agile practices and artefacts. In the following eight months
the students worked on agile projects and self-organized their work,
as well as their learning processes, to a great extent.
Teaching practice: Building collaborative teams
There is general agreement that a person’s performance and moti-
vation is best, if he/she is interested in the topic. However, in school
projects it is typical for students to join a team because their best
friends are there, rather than out of interest. Here, the teacher asked
the students to vote for their favorite topic. However, while they
were voting they did not know that the team building will be based
on the voting. This procedure resulted in teams which were mostly
not the usual, well-established ones. Consequently, students had to
find ways of cooperating and communicating with “new” partners.

Teaching practice: Pedagogical support and delegating respon-
sibility
Agile projects contain playful practices for determining the project
goals and requirements. However, due to limited experiences in
software development at this early learning phase the students were
not confident in determining achievable goals all by themselves yet.
This problem was addressed by customer meetings with the teams
to support them in the elaboration and specification of goals of a
first stage. Similar to professional practice, the students had to ne-
gotiate with the customer (teacher), who could pedagogically influ-
ence the project by keeping the context authentic. As soon as pos-
sible, the projects’ control was shifted to the teams, i. e. students
became their own customers as soon as possible.
Teaching practice: Iterative project setup
According to the agile model, with each iteration students now re-
peatedly apply the sequential process of planning, implementation
and testing. However, at the beginning, the students were neither
good programmers nor did they know what to agree on in a collab-
orative work. This challenge was met by planning small tasks for
user stories, which last for a work period of approximately 20

minutes, implementing the tasks collaboratively and meeting again
for planning. Finally, teams integrated and tested their code so that
they always had a working prototype at the end. As code integration
was not tool-supported, this was done only at the end of each lesson
in order to save time.

Usually, an iteration may not be interrupted in order to create an
effective workflow: If problems occur, they should be solved in the
next iteration. Here, an iteration could also be interrupted, if a prob-
lem occurred which could be solved by the team only. This facili-
tates students’ learning by solving problems, which was more im-
portant than effective product creation. However, experience also
showed that not interrupting the teams works quite well after some
weeks, as students rapidly learned to plan in a goal-oriented way.
Teaching practice: New content
Starting with project-based learning early implies that large parts
of the curriculum need to be covered within the project. It remains
a challenge to provide such learning opportunities to students with-
out interrupting them. Experience showed that the teams—even
though they performed quite differently—often had to solve similar
problems nearly at the same time. For example, they all needed one-
dimensional arrays at a certain point. Then a central input phase
providing theory and code fragments was scheduled at the begin-
ning of the next lesson. If a team needed input much earlier, it was
provided with individual help or asked to implement other user-
stories first. If students did not come across obligatory content by
themselves, the teacher, in the role of a customer, asked for certain
features that would require the application of the concept in focus.

In the first year it turned out that the coordination and planning of
the input-provision was not transparent enough. Therefore, the field
“problems” was introduced at the project board and the students
were encouraged to write down their problems and questions on
sticky notes (see fig. 3). If it is obvious that the programming pair
or the team can solve the problem without support, the note is reas-
signed to the column “in plan” and a hint is given, if necessary. If
it is obvious that other teams will have similar problems soon, the
team is asked to postpone the affected user-story for a certain time
and a central input phase is scheduled. Otherwise, the individual
pair or team is provided with input. This approach facilitated the
coordination of input provision in the following years.

3.3 Different Learners, Different Teaching
Practices, but the Same Framework
The following three projects are also based on the same model
(AMoPCE). All four teachers participated in the same initial work-
shop. Also, they all conducted their project with programming nov-
ices early in the year. However, by adapting the model according
to their students’ individual needs and their individual context they
designed rather different interventions. In order to contrast and
learn from the practical experience, the most interesting approaches
are described in the following paragraphs.

Figure 3. Typical problems and how they were handled.

Figure 2. Implementations of "A circle moving in a circle”.
Arrows are added to illustrate the movement.

62

Project 2: A “scripted project” was put into practice as an alterna-
tive approach to the project’s preparation we described above. It
combines self-organized learning with the agile framework. Stu-
dents become familiar with agile artefacts like project boards, user-
stories, tasks and prototypes, with practices like stand-up meetings,
pair-programming3 and even planning poker on the fly.
The teacher planned four iterations, each lasting two weeks (with
90 minutes plus 45 minutes per week). Each iteration had three
stages: learning new content and doing some exercises, applying
the knowledge using a Processing programming environment to
build an increment to the teams’ prototype, and, finally, showing
and reflecting the products in plenum.

In stage one, programming pairs self-organized their work on so
called “student-stories” and tasks, which are actually learning as-
signments designed by the teacher. In stage two, the teams worked
collaboratively on ready-made user-stories and tasks which corre-
sponded to the newly learned skills but also allowed individual cre-
ative interpretations to some extent. Finally, in stage three, there
was peer feedback and feedback from the teacher. The teacher es-
pecially valued the regular reflection and feedback meetings. He
observed that the frequent feedback resulted in a steady growth of
students’ self-efficacy.

Project 3: In this short-time project, lasting for four weeks (90
minutes plus 45 minutes a week) only, CSE novices gained practi-
cal experience with agile projects early in the year by using Scratch.
The emphasis of the project was less on the students’ progress in
their programming skills, but more on their organizational skills.
The task was to collaboratively develop increasingly elaborate pro-
totypes of a simple game by organizing the team work in a way
similar to professional agile projects. It was communicated to the
students in advance that they would not be able to implement all
their ideas. However, they would know how things worked and
how they would have to continue. In their reflection the students
mentioned that they learned how to collaborate in software devel-
opment. They also stated that they experienced not only the neces-
sity of communication and the difficulty of creating a common un-
derstanding, but also the highly motivating character of collabora-
tive work.

Project 4: The idea of this field-tested approach is to include “sci-
entific” aspects into the project-work even if the students are pro-
gramming novices. Students did not focus on the software product
or the enhancement of programming skills, but rather on the evalu-
ation and reflection of the software development process itself. I. e.,
the students applied an agile framework and evaluated and reflected
the method.

4. FINDINGS
Can one methodological framework successfully be of use in such
a variety of very divergent learning settings? Applying a methodo-
logical framework out of the box, such as the one used for agile
projects, one might expect similar outcomes even within different
scenarios. Analysis of the data (cf. section 3) reveals that the teach-
ers adapted the framework to a substantial degree in accordance
with their pedagogical goals and the learners’ needs. How differ-
ently the challenges of agile projects were addressed in the different
settings will be discussed exemplarily in section 4.1. Experiences
that occurred in a similar way in all projects will be elaborated with
respect to project 1 in section 4.2. The solutions illustrate a lot of

3 A gamified technique; team members estimate by playing num-

bered cards face-down, then cards are revealed. If necessary, the
estimates are discussed, finally there must be a consensus.

creativity and pedagogical content knowledge and may serve as an
example for good teaching practice.

4.1 Variations of Agile Practices in Different
Settings
Iterations for programming novices
Teachers used two different strategies for handling an iteration, de-
pending on which one fits their context best. In one approach the
iteration gets some form of even smaller sub-iteration, while in the
other approach the number of challenging tasks is reduced. As we
outlined in section 3.2, in project 1 the course of an iteration was
adapted to the learners’ skills (planning of only small tasks) and the
projects objectives (enabling learning by problem solving). Addi-
tionally, further context parameters were taken into account, like
used tools (no tool-supported integration) or the used programming
language. In project 3 the iteration’s course went according to the
agile project model with a duration time for iterations of 90
minutes. However, the number of challenging tasks was reduced:
firstly, students did not have to change perspectives. Both, custom-
ers’ and developers’ perspective, were almost identical for the im-
plementation with Scratch due to the small user-stories. Secondly,
user-stories could be pulled or postponed in order to adapt the
workload of an iteration. Thus time management became rather
easy.
Emphasize and structure communication
The model for agile school projects includes various practices to
structure and foster communication, like the stand-up meeting in
front of the project board. Students meet at the beginning of each
lesson in order to recap last week’s lesson.

This practice is valued and implemented by all teachers. However,
teachers also added further similarly organized meetings in front of
the project board. In project 1, customer-meetings and problem-
solving meetings were introduced, as outlined above. Furthermore,
all teachers included planning-meetings at the project board. There
were product-reflections in project 2 and process-reflections in pro-
ject 4. These meetings are all known in professional projects and
each meeting has a different structure there. However, teachers all
adapted the simple but effective structure of the stand-up meeting
to most of their added meetings. The teams’ project board became
the typical place for any team interaction.
Handle practices flexibly and optimize the process
Comparing the projects also shows that teachers handled the agile
practices differently, depending on their students’ reaction and the
skills they wanted to foster. This flexible handling also offered the
teams the opportunity to optimize their process based on reflected
experiences and personal interests (as it is done in professional pro-
jects).

For example, all teachers introduced planning poker3 for effort es-
timation. In project 1, the practice was introduced after about two
months, because the students then approximately have the experi-
ence they need. However, even though some user-stories were huge
in the beginning, at that point the user-stories had all become quite
small and in average equally sized. Planning poker turned out to be
unnecessary and most teams decided to continue estimating the ef-
fort based on the number of user stories (a fact experienced by pro-

63

fessional developers, too). In project 2, students also became famil-
iar with the practice of planning poker. However, since the student-
and user-stories for each iteration were well planned by the teacher,
taking into account slow as well as fast learners, students realized
that effort estimation offers no additional benefit and therefore
skipped it completely. In project 3, the students used the categories
small, medium, and large to estimate the effort. This helped the stu-
dents to plan their iteration without long discussions. Also, as they
pulled or postponed user-stories, there was no urgent need to reflect
the estimation in order to explicitly foster the skill. In project 4
however, the participating students were high performers with ex-
cellent analytical skills and quick perception. These students were
fascinated by planning poker. They reflected their previous estima-
tion and used the gained knowledge in the next iteration, comparing
new tasks to already implemented ones. They also reported that
planning poker helped them to achieve a common understanding in
planning, as different estimates often result from a different under-
standing. Moreover, it supported their passive learning and fostered
the ability to explain one’s arguments.
Flexible choice of roles taken by the students
All teachers value the aspect that students have to consider situa-
tions from several perspectives, including not only technical de-
tails, but also customer needs and their vision of the product. Nev-
ertheless, they also report in unison that this is really challenging
for their students. They developed different approaches to cope
with this challenge.

In agile projects, user-stories describe a small functionality from
the customers’ point of view and tasks describe what needs to be
done to realize a user story from the developers’ perspective. In
order to plan tasks, the students have to change perspectives. In
project 1 this skill is fostered starting in the preparation phase and
students keep practicing it throughout the year. In a little while, stu-
dents spontaneously and alternately take the customer role, starting
sentences with “As a customer, I…”. In the beginning, students fre-
quently call spontaneous problem-solving meetings and learn by
experience how to plan effectively and how to change perspectives.
Discussions during the product test show that they also gradually
understand the different tasks of a developer (planning, designing,
coding), as they identify the origin of the detected problem. In pro-
ject 2, the teacher provided user-stories and tasks. The students are
developers, but they have to design a user manual too. Therefore,
they change between the developer perspective, which is new to
them, and the user perspective, which is quite familiar. This change
of perspectives does not require programming skills and thus fits
programming novices well. In project 3, the gap between the cus-
tomer’s perspective and the developer’s perspective is reduced, as
described above. In project 4, students reflect by themselves that
the planning of tasks for the corresponding user stories requires a
change of perspectives. Also, they experienced this as difficult for
several reasons.
4.2 Common Experiences with Agile Practices
Findings with respect to the goals and challenges that are shared by
all projects will be presented exemplarily for project 1.

4.2.1 Findings concerning the Students Learning
Outcome
The overall objective of project 1 is that students learn the basics of
object-oriented modelling and programming according to the cur-
riculum. Based on the collected data it is outlined that the agile pro-
ject successfully supports this goal and that slow learners are keep-
ing up.

Programming: The pictures of the project boards and the code
show that students now master more complex tasks than students
did in the years before. Also, students work more decidedly and ask
much less for support. Rather students work out the solution of
complex tasks by themselves and thereby reuse and/or adapt code
fragments they found in tutorials (see fig. 4 and 5). For example,
creating one’s own colors with BlueJ typically is a complex task.
Some students want to create their own colors at all costs, as the
given Java class comes with a fix set of colors addressed by num-
bers 0 to 7. Each year a team manages this task using a Java manual
and when they succeed there is a shout “Yes, yepee! We did it!”
and other students gather and cheer and the solution is shared.
Reading the students’ code also shows that they use more structures
and concepts than the students did in the years before and more than
the curriculum includes. I. e. concerning students’ programming
skills, the outcome meets the objectives.

Modelling: As the teacher reports, in the traditional, non-agile pro-
jects, object-oriented modelling was difficult to motivate. Further-
more, for most students its benefit remained purely theoretical.
Now, students voluntarily started to draw and update class dia-
grams after some weeks and refer to them when they planned new
user-stories or discussed possible solutions to a problem. Addition-
ally, the teacher could observe how teams discussed the communi-
cation between objects and hence made use of dynamic modelling
techniques, i.e. sequence diagrams, even before they were officially
introduced, in order to better organize their planning activities.
Hence, the wish of using this modeling technique arose out of the
students’ experiences and problems –there is probably no better
way of learning what modelling is about. In comparison to regular
teaching, in total there was less time spent on the elaboration of
models, but students acquired a deeper understanding.
Slow learners: The teacher observed that slower learners often
have problems, e.g. writing their code according to the team’s
model in the beginning. Since the teacher avoids intervening, even-
tually the students will require help with their work. Then, the
teacher suggests and guides a refactoring of the code. This enables
students to understand that some minor modifications may be suf-
ficient for fixing the code. Also, this provides the slow learners with
the positive experience that they too contribute to the team’s prod-
uct. Observing the performance of these slow learners in the course
of the project shows that refactoring is an encouraging experience
to most of them strengthening their self-confidence and maintain-
ing their motivation.

Figure 4. Create complex shapes and use own colors.

Figure 5. Examples of more complex user-stories.

64

4.2.2 Findings Concerning Students Attitude To-
wards CS
The percentage of students who elect CSE as one of their next
year’s subjects can be used as an indicator for students’ attitude to-
wards CSE. Due to the structure of the Bavarian High School sys-
tem it is generally difficult to actually win students for CS courses.
Consequently, the 11th grade and 12th grade are often taught con-
jointly to reach the number of students necessary for a course.

In order to outline the impact of the agile project 1 on the students'
choice of subject, we describe the situation in the years 2012 to
2016. In 2012 and 2013, a waterfall model was applied in the eight-
month project. However, conducting the project early during the
school year had no effect. Still, as in the years before only one or
two students per year, i.e. 2%, chose CS as subject. In 2014 the
teacher changed over to the agile procedure which is described in
project 1. The percentage of students who were interested in con-
tinuing their CS education rose to over 15% in this year and has
stayed at a high level since then.

If and in what way this observation is reproducible, and also how it
is connected to the introduction of agile methods, future research
must show. However, similar effects are observed and reported by
other teachers. All of them point out that agile projects motivate
and inspire their students. Therefore, they welcome the opportunity
to conduct projects with programming novices early in the year.

5. DISCUSSION
Projects can be conducted in various contexts. In place of the tradi-
tional project, scheduled at the end of a school year, teachers suc-
cessfully conducted projects early in the school year, inspiring and
motivating their students.

Projects can also be actively designed and shaped. In place of the
traditional project, focusing on the application of existing profes-
sional skills, teachers successfully designed a variety of projects
with different foci, emphasizing different pedagogical objectives
and aiming for different professional goals.
For many teachers who participate in the study the idea of flexibly
adapting a methodological framework was uncommon. This is in
line with literature about project based learning, which yet often
fails to stress the possibilities and need of individual methodologi-
cal adaptations, based on the PCK and objectives of the teachers.
Based on the experiences we learned that students, as well as teach-
ers, benefit if a methodological framework is considered more as a
choice of good practices than a fixed process model. In this paper
we outlined several examples of how such a flexible handling can
work in regular school teaching.

Summing up, the teachers describe their experiences as follows:
Firstly, one can make students enthusiastic about CS as a subject
by conducting agile projects, and that already early on during the
learning process. Secondly, with those projects one can foster the
development of abilities central to being a good software developer
[9]. Also, depending on the design of the project, individual com-
petences can be especially emphasized and facilitated: continuous
learning (project 1), understanding and implementing feedback
(project 2) as well as organizing teamwork (project 3) and reflec-
tion (project 4).

6. REFERENCES
[1] ACM Computer Science Teachers Association. 2016.

DRAFT 2 of the CSTA K-12 CS Revised Standards. http://
www.csteachers.org/page/SubmitYourFeedback. Accessed
July 2016.

[2] Bell, T., Andreae, P., and Lambert, L. 2010. Computer Sci-
ence in New Zealand High Schools. In Proceedings of the
Twelfth Australasian Conference on Computing Education -
Volume 103. ACE ’10. Australian Computer Society, Inc,
Darlinghurst, Australia, 15–22.

[3] Blumfeld, P. C., Solowy, E., Marx, R. W., Krajcik, Joseph S.
Guzdial, Marc, and Palincsar, A. 1991. Motivating Project-
Based Learning: Sustaining the Doing Supporting the Learn-
ing. Educational Psychologist 26, 3 & 4, 369–398.

[4] Boehm, B. W. and Turner, R. 2004. Balancing agility and
discipline. A guide for the perplexed. Addison-Wesley, Bos-
ton.

[5] El-Abbassy, A., Muawad, R., and Gaber, A. 2010. Evaluat-
ing agile principles in CS Education. International Journal of
Computer Science and Network Security 10, 10.

[6] Frey, K. 1983. Die sieben Komponenten der Projektmethode
- mit Beispielen aus dem Schulfach Informatik (The Seven
Components of the Project Method – with Examples from
CSE). LOG IN 3, 2, 16–20.

[7] Hedin, G., Bendix, L., and Magnusson, B. 2008. Teaching
Software Development Using Extreme Programming. In Re-
flections on the Teaching of Programming, J. Bennedsen, M.
E. Caspersen and M. Kölling, Eds. Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg, 166–189.

[8] Kastl, P. and Romeike, R. 2015. “Now they just start work-
ing, and organize themselves” First Results of Introducing
Agile Practices in Lessons. In Proceedings of the 10th Work-
shop in Primary and Secondary Computing Education.
WiPSCE ’15. ACM, New York, NY, USA, 25–28.

[9] Li, P. L., Ko, A. J., and Zhu, J. 2015. What Makes a Great
Software Engineer? In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering (ICSE), 700–
710.

[10] McKinney, D. and Denton, L. F. 2006. Developing collabo-
rative skills early in the CS curriculum in a laboratory envi-
ronment. SIGCSE Bull. 38, 1, 138.

[11] Meerbaum-Salant, O. and Hazzan, O. 2010. An Agile Con-
structionist Mentoring Methodology for Software Projects in
the High School. ACM Transactions on Computing Educa-
tion 9, 4, 1–29.

[12] Meyer, B. 2014. Agile! The good, the hype and the ugly.
Springer.

[13] Romeike, R. and Göttel, T. 2012. Agile Projects in High
School Computing Education: Emphasizing a Learners’ Per-
spective. In Proceedings of the 7th Workshop in Primary and
Secondary Computing Education. WiPSCE ’12. ACM, New
York, NY, USA, 48–57.

65

