

Footer – Please leave the footer blank

Analyzing Twitter Data using Snap!

Andreas Grillenberger, andreas.grillenberger@fau.de
Computer Science Education Research Group, Universität Erlangen-Nürnberg

Ralf Romeike, ralf.romeike@fau.de
Computer Science Education Research Group, Universität Erlangen-Nürnberg

Abstract

In this paper, we present a software tool which enables students to discover and learn about data
stream systems (DSS) in a constructionist way. As DSS are part of the ongoing developments and
innovations in data management, which are often summarized by the term Big Data, this tool
shows in an exemplary way how these complex topics can be incorporated into school teaching.
Therefore, we extended the block-based programming environment Snap!, so that it supports
analyzing the Twitter data stream even without having any pre-knowledge on data stream analysis. 

Keywords

data stream system; data analysis; block-based; software tool; big data

Introduction

Today, everyone is generating large amounts of data and is always confronted with the results
and implications of data analysis. Not only smartphones and websites are producing and
processing data continuously, but data are also relevant to many other parts of the daily life.
Despite their relevance for everyone (cf. Grillenberger & Romeike 2015), these topics seem hard
to understand because of their complexity. Nevertheless, various ideas that are central to these
topics can be identified: for example, causality or correlation as analysis paradigm, the analysis
methods used, (in particular categorization, clustering and association analysis), consistency,
redundancy and parallelization.

For discussing these concepts at school, appropriate software tools are required in order to let
students gather their own experiences with these systems. While in other teaching contexts, often
professional tools are also used for teaching purposes, typical tools in the context of “Big Data”
are too complex for providing them to students without extensive further support. Instead, finding
ways for reducing the complexity is important for allowing students to build up own knowledge on
such systems in a constructionist way.

Hence, we prepared the topic data stream systems in a way, that students can discover and
understand the efficiency of this modern data analysis approach, the accompanying threats but in
particular also the chances and possibilities that are opened up by these systems on their own.
The software tool presented in the following supports the design of own data analyses without pre-
knowledge on data stream systems, the underlying concepts and ideas or the tool itself. In this
way, the presented approach is prototypical for incorporating the complex and innovative topics in
data management / Big Data for (secondary) computing education.

The Snap! Data Stream Extension

For enabling students to conduct own data analyses, we extended the block-based programming
environment Snap! (Harvey and Mönig 2015) in order to support working with and processing of
data streams. We decided for using Snap! because of its low barriers to entry, but also because it
provides diverse possibilities and is easily extendable. Hence, the students can not only use the
provided functionalities, but also extend them on their own in order to provide additional
possibilities. As data stream source, we selected Twitter, as this social network provides a huge

Header – Please leave the header blank

Footer – Please leave the footer blank

amount of data easily accessible via a programming
interface. Also, these data can be used without data privacy
risks, as all the accessed data are also available via Twitter’s
public website; the students can hence not only access the
tweets text, but also e. g. data on the user, followers or
location data.

All new implemented blocks are based on original Snap!
blocks only. Hence, they can be used in the original Snap!
installation and most of its derivatives. Also, students can
take a look behind the implementation and customize it, as
the blocks may be edited as all other own blocks. For
restricting the creative openness as less as possible, we
allow accessing all the attributes provided by Twitter for
each tweet. Thus, students have much creative freedom
when analyzing the Twitter stream.

For visualizing the analysis results in an easy and clear way,
we also implemented two visualizations: a bar chart
(cf. fig. Figure 1), which is e. g. suitable for showing the
results of categorization tasks, and a map (cf. fig. Figure 2)
that can be used for visualizing spatial data. Both
visualizations can also be used as example implementation
for additional visualizations, which can also be implemented
by the students on their own. In fig. Figure 3, we show an
example program for categorizing all the incoming tweets by
language; this code generates the image shown in
fig. Figure 1.

Conclusions

With the simple-to-understand programming environment
Snap! and by restricting to the basic ideas and concepts, we
can break down the complex topic data stream systems to a
level suitable for students. The extensibility of Snap!
provides the advantage that despite the low entry level, also
complex analyses are possible. This is further supported by
basing on the real and infinite data source Twitter. The
relevance and attractiveness of topics like data stream
system can be further emphasized by incorporating other
innovations: e. g. with the upcoming Internet of Things (IoT),
huge amounts of data are generated and analyzed—and it
can be assumed that data stream systems will also have high
importance there. By combining the described tool with for
example objects created in physical computing projects, the
IoT can be reconstructed in small-scale.

References

Grillenberger, Andreas; Romeike, Ralf (2015) Analyzing the Twitter Data Stream Using the Snap!
Learning Environment. In Brodnik, Andrej; Vahrenhold, Jan (Eds.) Informatics in Schools.
Curricula, Competences, and Competitions. Springer International Publishing.

Harvey, Brian; Mönig, Jens (2015) Snap! Programming Language. http://snap.berkeley.edu

Figure 2. Bar chart visualization

Figure 3. Map visualization
(map image ©2011 Strebe, CC-BY-SA 3.0)

Figure 1. Bar chart visualization

