Die digitale Welt gestalten

Informatische Bildung in der Grundschule

•••

2. April 2019 Hermann-Hedenus-Grundschule Erlangen

Die Referierenden

Tilman Michaeli, Wiss. Mitarbeiter

FAU Erlangen-Nürnberg Didaktik der Informatik tilman.michaeli@fau.de 09131-85-20262 Stefan Seegerer, Wiss. Mitarbeiter

FAU Erlangen-Nürnberg Didaktik der Informatik stefan.seegerer@fau.de 09131-85-20262 Fernseher Computer Buntstift

Material, Folien, etc. unter: https://ddi.cs.fau.de/schule/wsgs

Agenda

Digitalisierung: Was ist das eigentlich? Wie sollte Schule reagieren? Welche Rolle spielt informatische Bildung? Und was ist das jetzt wieder? Informatik in der Grundschule...? Ja sag mal spinnen die? Wie man das vermittelt: 5 Stationen

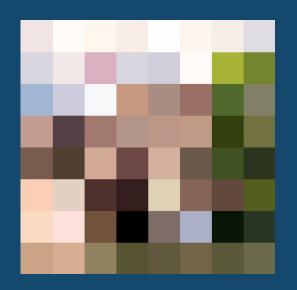
Digitalisierung: Was ist das eigentlich?

Was ist digital, was ist analog?

Selbst ausprobieren unter

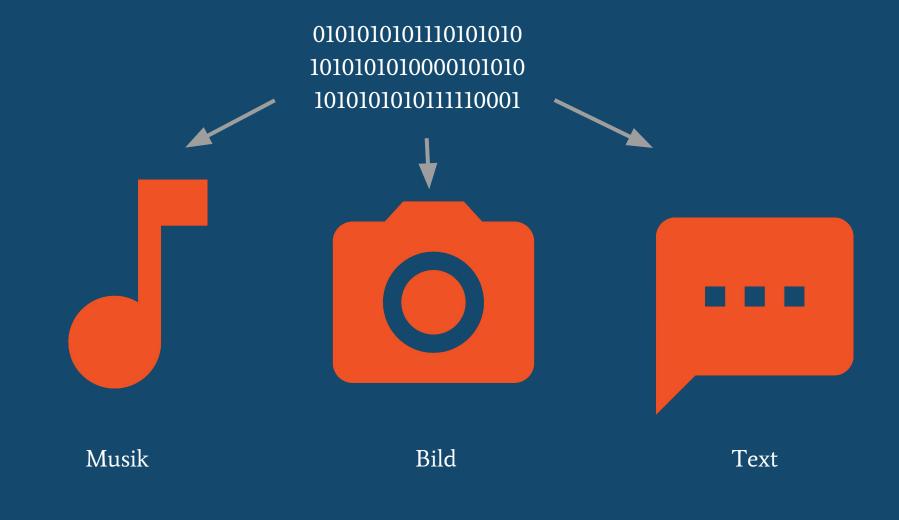
https://smerge.org/d4a/digital-analog-tinder/index.html

Digitalisierung im engeren Sinne



werden abgebildet auf:

stufenlose (und damit unendlich verschiedene) Daten


5

auf Ziffern

Binärkarten.

Zählen wie ein Computer

Wozu führt das?

Was **digitalisierbar** ist, wird digitalisiert

Was **automatisierbar** ist, wird automatisiert

Was **vernetzbar** ist, wird vernetzt

Auswirkungen Beispiel I.

Versicherungsvertreter/in

Der Arbeitsalltag dieses Berufs besteht im Wesentlichen aus

7 verschiedenen Tätigkeiten,

4 davon und somit 57% könnten schon heute Roboter übernehmen.

Bankkaufmann/-frau

Der Arbeitsalltag dieses Berufs besteht im Wesentlichen aus 8 verschiedenen Tätigkeiten,

7 davon und somit 88% könnten schon heute Roboter übernehmen.

Lehrer/in - Real-/Mittelschulen (Sekundarstufe I)

Der Arbeitsalltag dieses Berufs besteht im Wesentlichen aus 8 verschiedenen Tätigkeiten,

1 davon und somit 13% könnten schon heute Roboter übernehmen.

Auswirkungen Beispiel II.

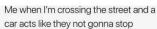
Gedankenspiel

Wozu führt das

Wie sollte Schule reagieren?

Das IWB in der Schule

Neue Wandtafeln für mehr Vielfalt

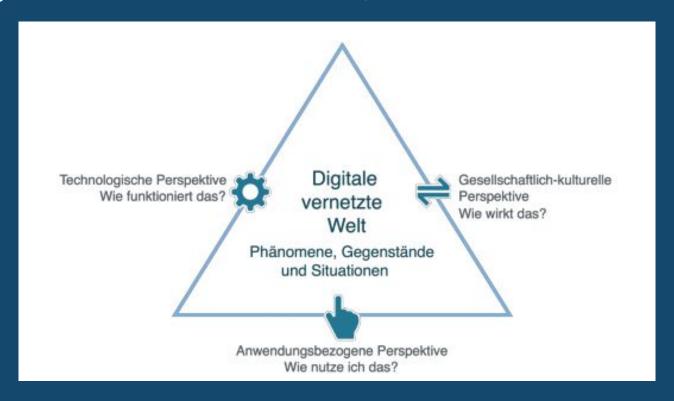


el biggest threat to...

lauren memes Imaooo

das gebots nun uswerzichknene Les-ma. Der neuer Wilmacht hausen und nun Zure der Wilmacht hausen und nutzen der Verlagen und der Verlagen der Verlagen der Verlagen des Verlagen bei von Unterrakte einbauent. Eine der Verlagen wir der Verlagen wir der Verlagen bei von die Leder und verlagen wir der Verlagen wir der Verlagen wir der Verlagen bei von die Konfers sind behömmlichen der verlagen wir der Verlagen wir der Verlagen wir der Verlagen wir der Verlagen der Ver

Pädagogische Vorteile In drei Schulzimmern i



stadi al-steinen, federe, horen, felderen, federen, horen, felderen, federen, horen, federen federen and verlichtige Westen in den sodas sie die interaktiven Westen federen und verlichtige Westen in den sodas sie die interaktiven Westen federen f

Datenso

Das digitale nicht nur anwenden, sondern verstehen!

Beispiel Suchmaschine

Welche
Suchmaschinen gibt
es?

Nach welchen Prinzipien werden die Ergebnisse sortiert? Kann ich mir sicher sein, dass die Ergebnisse nicht vorgefiltert sind?

> Wie findet eine Suchmaschine Millionen von Ergebnissen binnen Sekunden?

Was bedeutet es, wenn Suchmaschinen wissen was ich suche?

Wie kann ich Bilder mit einer bestimmten Lizenz suchen?

Konzentration auf das Nichtautomatisierbare!

Was hat informatische Bildung jetzt damit zu tun?

Und: Was ist das überhaupt?

In der Informatik geht es genauso wenig um Computer, wie in der Astronomie um Teleskope

(E. Dijkstra)

Gedankenspiel

Ideen und Prinzipien

Die Idee von Schule

- Umgang mit fachlichen Gegenständen und Produkten
- Anwendung/Bedienung von digitalen Medien

Anwendung

ganz nützlich
... aber veraltet schnell

- Verständnis
 zugrundeliegender
 Prinzipien, Ideen und
 Gesetzmäßigkeiten
- Erlernen der grundlegenden Arbeitsweisen

Wissenschaftsdisziplin

Langfristig anwendbare Kompetenzen

Mit Informatik lässt sich das präzise Planen, Arbeiten und Kommunizieren im Team üben

Warum Informatik allgemeinbildend ist

Informatik hilft, auch Probleme außerhalb des Fachbereichs zu lösen.

Informatik hilft die digitale Welt zu verstehen und mitzugestalten!

COMPUTING AT SCHOOL

Algorithms making steps & rules The Computational Thinker: Concepts & Approaches Tinkering experimenting & playing

Creating designing & making

> Debugging finding & fixing errors

Persevering keeping going

Collaborating working together

Decomposition breaking down into parts

Concepts

Patterns spotting & using similarities

Abstraction removing unnecessary detail

I

Evaluation making judgement

Approaches

www.barefootcas.org.uk

© Crown copyright 2014 (OGL)

Informatische Phänomene umgeben uns

- Smartphones
- Fahrkartenautomaten
- Internet
- Suchmaschinen
- (Fehlerhafte) Software
- Bilder

- Routenplaner
- Smart Home und Internet of Things
- personalisierte Werbung
- Videospiele
- Autonomes Fahren
- ..

Zwischenfazit

Bei digitaler Bildung geht es genauso wenig um iPads, wie in der Astronomie um Teleskope

Digitale Bildung geht nicht ohne informatische Bildung

#2

Informatische Bildung heißt weder mit iPads umgehen lernen, noch (nur) Programmierenlernen

Informatik in der Grundschule...? Ja sag mal spinnen die?

Bildquelle: https://twitter.com/c_emcke/status/7 46194481192439813

Können die das überhaupt?

LNDW17 und 19

Die Wissenschaft ist sich einig...

Grundschulkinder begeistern mit der Zauberschule Informatik

Kinder auf dem Wege zur Informatik: Programmieren in der Grundschule

Gestrandet auf der Schatzinsel - Schätze heben mi Informatik in der Grundschule

Algorithmik in der Grundschule

Ab wann kann man mit Kindern Informatik machen? Eine Studie über informatische Fähigkeiten von Kindern

Nicht eher: Sollten die das überhaupt?

Was passiert (inter)national?

Das Schulfach Computing (UK)

- verstehen und wenden die fundamentalen Prinzipien und Konzepte der Informatik, wie beispielsweise Abstraktion, Logik, Algorithmen und die Repräsentation von Daten, an (Computer science)
- analysieren Probleme aus informatischer Perspektive und haben wiederholte praktische Erfahrungen im Schreiben von Computerprogrammen, um diese Probleme zu lösen (Computer science)
- bewerten Informationstechnik, wie beispielsweise neue oder unbekannte Technologien, und verwenden diese zu analytischen Lösung von Problemen (Information technology)
- sind verantwortungsvolle, kompetente, selbstbewusste und kreative Nutzer in der digitalen
 Welt (Digital literacy)

=> Ausgerichtet an Computational Thinking

Das Schulfach Computing (UK)

Key Stage 1: (5-7 Jahre)

- verstehen, was Algorithmen sind, wie sie als Programm auf digitalen Geräten implementiert werden und das Programme nach genauen und eindeutigen Anweisungen ausgeführt werden.
- erstellen und debuggen einfache Programme.
- nutzen logisches schließen, um das Verhalten einfacher Programme vorauszusagen.
- nutzen Technologie zielgerichtet, um digitale Inhalte zu erstellen, organisieren, speichern, verändern und abzurufen.

Das Schulfach Computing (UK)

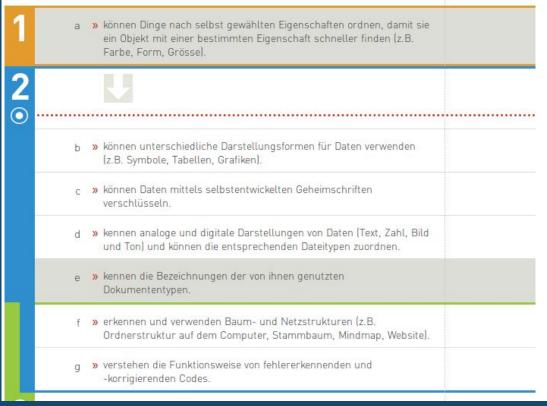
Key Stage 2: (7-11 Jahre)

- entwerfen, implementieren und debuggen Programme für spezifische Ziele, wie z.B.
 einschließlich der Steuerung oder Simulation von Systemen; Probleme lösen, indem man sie in kleinere Teile zerlegt.
- nutzen Sequenzen, Alternativen und Wiederholungen in Programmen; Arbeiten mit Variablen und verschiedenen Formen von Ein- und Ausgabe.
- nutzen logisches schließen, um das Verhalten einfacher Algorithmen vorauszusagen und um Fehler in Algorithmen und Programmen zu finden und zu beheben.
- verstehen Netzwerke wie z.B. des Internets; wie understand computer networks including the internet; wie Netzwerke mehrere Dienste anbieten können, wie z.B. das World Wide Web.
- beurteilen, wie Suchergebnisse ausgewählt und sortiert werden.

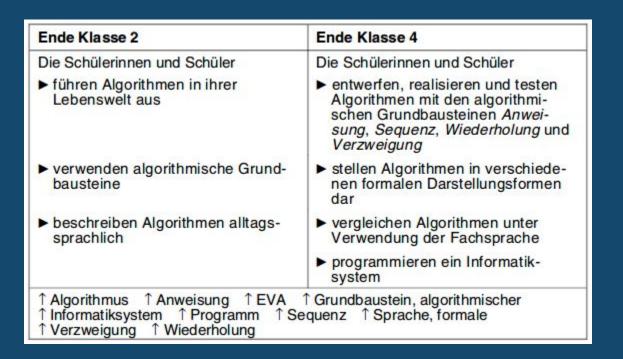
Medien und Informatik - Lehrplan 21 (Schweiz)

. Zyklus	2. Zyklus	3. Zyklus
G / 1.–2. Klasse Primarschule	3.–6. Klasse Primarschule	1.–3. Klasse Sekundarstufe I
Deutsch		
	Englisch 1. Fremdsprache	
	Französisch 2. Fremdsprache	
		Italienisch
		Latein
Mathematik		
Natur, Mensch, Gesell	schaft (1./2. Zyklus)	Natur und Technik [mit Physik, Chemie, Biologie]
	•••	
Gestalten: Bildnerisches	Gestalten / Textiles und Technisc	hes Gestalten
Musik		
Bewegung und Sport		

Medien und Informatik


Bildquelle: https://v-ef.lehrplan.ch/index.php

Medien und Informatik - Lehrplan 21 (Schweiz) -


- Die Schülerinnen und Schüler können Daten aus ihrer Umwelt darstellen, strukturieren und auswerten.
- Die Schülerinnen und Schüler können einfache Problemstellungen analysieren, mögliche Lösungsverfahren beschreiben und in Programmen umsetzen.
- Die Schülerinnen und Schüler verstehen Aufbau und Funktionsweise von informationsverarbeitenden Systemen und können Konzepte der sicheren Datenverarbeitung anwenden.

Medien und Informatik - Lehrplan 21 (Schweiz)

Ende Klasse 2	Ende Klasse 4
Die Schülerinnen und Schüler	Die Schülerinnen und Schüler
 erläutern, dass Dokumente aus Daten bestehen 	 entwerfen für eine kleine Anzahl verschiedener Elemente eine eigene binäre Codierung
 stellen Information mithilfe von Daten dar 	 stellen Information in unterschied- lichen Repräsentationsformen (Text, Bild, Audio, Video) dar
▶ interpretieren Daten, um Information zu gewinnen	 nutzen und entwickeln Vereinbarungen, um Daten zu verschlüsseln und zu entschlüsseln
 geben an, dass Vereinbarungen notwendig sind, um Daten zu codieren und zu decodieren 	 nutzen und entwickeln Vereinbarungen zur Übermittlung von Nachrichten
 codieren Daten in eine binäre Darstellung und interpretieren binär dargestellte Elemente als Daten 	
↑ Darstellung, binäre ↑ Daten ↑ Info	rmation ↑Code ↑Verschlüsselung

Ende Klasse 2	Ende Klasse 4	
Die Schülerinnen und Schüler	Die Schülerinnen und Schüler	
 beschreiben Automaten in ihrer Lebenswelt als selbsttätig arbeitende Maschinen 	 beschreiben Zustände und Zu- standsübergänge von Automaten 	
▶ benennen Zustände von Automaten	 erstellen Automatenmodelle, um (sprachliche) Eingaben zu akzeptieren und (sprachliche) Ausgaben zu erzeugen 	
 beschreiben ihre Interaktion mit Automaten 	► steuern Automaten auch durch Programmieren	
 erläutern, dass ein Automat regelgesteuert seine Zustände verändert 	 erläutern die Notwendigkeit einer formalen Sprache zur Interaktion mit Informatiksystemen 	
↑ Automat/Automatenmodell ↑ Informatiksystem ↑ Programmiersprache ↑ Sprache, formale ↑ Zustand		

Ende Klasse 2	Ende Klasse 4	
Die Schülerinnen und Schüler	Die Schülerinnen und Schüler	
 benennen die Bestandteile von Informatiksystemen unter Ver- wendung der Fachsprache der Informatik 	 geben grundlegende, allgemein- gültige Beschreibungen der Funk- tion und Arbeitsweise von Infor- matiksystemen an (EVA-Prinzip) 	
 erläutern, dass Informatiksysteme von Menschen gestaltet werden 	► speichern Daten und finden Daten wieder	
► interagieren zielgerichtet mit Informatiksystemen	 unterscheiden zwischen lokaler und externer Datenspeicherung 	
► nennen und beschreiben Strategien, um einem Datenverlust vorzubeugen	▶ wenden Verfahren zur Sicherung von Daten an	
	▶ benennen Grundbestandteile des Internets und beschreiben, wie Daten im Internet mithilfe fester Verabredungen (Protokolle) übertragen werden	
↑ Daten ↑ Datenspeicherung ↑ EVA-Prinzip ↑ Informatiksystem		

Ende Klasse 2	Ende Klasse 4
Die Schülerinnen und Schüler	Die Schülerinnen und Schüler
 erläutern, dass ihre Lebenswelt von Informatik durchdrungen ist 	▶ benennen und beschreiben den Einsatz digitaler Werkzeuge in Schule und Freizeit
 nennen Maßnahmen, um Daten vor ungewolltem Zugriff zu schützen 	 ergreifen Maßnahmen, um Daten vor ungewolltem Zugriff zu schützen
halten sich an Regeln im Umgang mit Daten und Informatiksystemen	▶ wenden einfache Verfahren zur Sicherung der Integrität von Daten an
 erläutern, dass Daten personenbezogen sein können 	 entwickeln und bewerten Verein- barungen im Umgang mit Daten und Informatiksystemen
	 erläutern, dass mit Informatik- systemen personenbezogene Daten gesammelt und verarbeitet werden können
↑ Daten ↑ DRM ↑ Informatiksystem	↑ Verschlüsselung

Algokids (Bayern)

https://www.ddi.edu.tum.de/en/forschung/laufen de-projekte/programmierzirkus/

https://www.ddi.edu.tum.de/en/forschung/laufen de-projekte/programmierzirkus/

https://www.schule-piding-anger.de/55-startseite/berichte-der-startseite/356-algorhythmen-fuer-kinder-algokids.html

Wie man das vermittelt.

Agenda

Station 1	Das Bananenklavier – Tinkern mit MakeyMakey
Station 2	CS Unplugged – Aktivitäten zu Informatik ohne Strom
Station 3	Von Bienen und Blüten – Spinnen bzw. Bee-Bots
Station 4	Kommunizieren mit dem Computer – Scratch
Station 5	Die Tabletmuse? – der Mikrocontroller Calliope

Fragen? Diskussion?

Vielen Dank für Ihre Aufmerksamkeit!

Linktipps

GI-Primarstandards:

https://dl.gi.de/bitstream/handle/20.500.12116/20121/61-GI-Empfehlung_Kompetenzen_informatische_Bildung_Primarbereich.pdf

Haus der kleinen Forscher:

https://www.haus-der-kleinen-forscher.de/de/praxisanregungen/experimente-themen/informatik/

PHSZ Material:

http://ilearnit.ch/de/broschueren.html

CS Unplugged:

https://www.csunplugged.org/de/